

# **DEPT. OF ENVIRONMENT & ENERGY**

This guidance document is advisory in nature but is binding on an agency until amended by such agency. A guidance document does not include internal procedural documents that only affect the internal operations of the agency and does not impose additional requirements or penalties on regulated parties or include confidential information or rules and regulations made in accordance with the Administrative Procedure Act. If you believe that this guidance document imposes additional requirements or penalties on regulated parties, you may request a review

03-151 (Revision 8) April 2020

# AIR EMISSIONS GUIDANCE FOR PETROLEUM REMEDIATION SITES

# TABLE OF CONTENTS

| SECTION 1        | LIST OF ACRONYMS AND CONTACTS                     |    |
|------------------|---------------------------------------------------|----|
| 1.1<br>1.2       | Applicable Acronyms                               |    |
| SECTION 2        | INTRODUCTION                                      | 3  |
| 2.1              | Purposes and Use; Pre-approved Workplan           | 3  |
| 2.2              | General Information                               | 3  |
| 2.3              | Air Construction and Operating Permit Assessments | 4  |
| 2.4              | Risk Assessment                                   |    |
| 2.5              | Remediation System Construction.                  | 5  |
| <b>SECTION 3</b> | AIR QUALITY REGULATIONS                           | 7  |
| 3.1              | Introduction                                      | 7  |
| 3.2              | Air Pollutants                                    |    |
| 3.3              | Air Quality Construction Permit Requirements      | 7  |
| <b>SECTION 4</b> | PERMIT-RELATED DATA COLLECTION                    | 9  |
| 4.1              | What to Sample                                    | 9  |
|                  | 4.1.1 Pre-Pump Test and/or Pre-SVE/VE Pilot Test  |    |
|                  | 4.1.2 Pump Test and Pilot Test Sampling           |    |
|                  | 4.1.2.1 Pump Test Calculations for an AS          | 9  |
|                  | 4.1.2.2 Pilot Test Calculations for SVE/VE        |    |
|                  | 4.1.3 Operating System                            |    |
|                  | 4.1.3.1 Air Stripper                              | 10 |
|                  | 4.1.3.2 Vapor Extraction                          |    |
| 4.2              | VOCs Analysis Methods                             |    |
|                  | 4.2.1 Ground Water Analysis Methods               |    |
|                  | 4.2.1.1 Other Water Analysis Methods              |    |
|                  | 4.2.2 Air Emission Analysis Methods               |    |
| 4.3              | HAPs Analysis Methods                             |    |
| 4.4              | When to Sample                                    |    |
|                  | 4.4.1 AS Systems                                  |    |
|                  | 4.4.1.1 Pre-System Startup                        |    |
|                  | 4.4.1.2 Post-System Startup                       |    |
|                  | 4.4.2 SVE/VE Systems                              |    |
| 4.5              | Where to Sample                                   |    |
| 4.6              | How to Sample                                     |    |
| 4.7              | Pollutants to be Sampled                          | 18 |
| 4.8              | Quality Assurance and Quality Control             | 18 |

| SECTION 5                              | PERMIT-RELATED CALCULATION METHODS                                                                                               | 19       |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------|
| 5.1                                    | Permit Emission Calculations                                                                                                     | 19       |
| 5.2                                    | Preliminary Permit Calculation Reporting Procedures                                                                              |          |
| 5.3                                    | Post-Implementation Permit Calculation Procedures for Reporting                                                                  |          |
| 5.4                                    | Cessation of Air Emissions Sampling                                                                                              |          |
| 5.5                                    | Control Equipment.                                                                                                               |          |
| SECTION 6                              | RISK ASSESSMENT                                                                                                                  | 24       |
| 6.1                                    | Introduction                                                                                                                     | 24       |
| 6.2                                    | Data Collection and Sample Analysis Procedures                                                                                   |          |
| 6.3                                    | Pre-system Implementation Assessment                                                                                             | 25       |
| 6.4                                    | Post-system Implementation                                                                                                       |          |
| 6.5                                    | Determining the Air Dispersion Factors Using SCREEN3                                                                             |          |
| 6.6                                    | Exposure Assessment                                                                                                              |          |
| 6.7                                    | Toxicity Assessment                                                                                                              |          |
| 6.8                                    | Risk Characterization.                                                                                                           |          |
| 6.9                                    | Risk Calculation - AS Systems                                                                                                    |          |
| 6.10                                   | Risk Calculation - SVE/VE Systems                                                                                                |          |
| 6.11                                   | Risk Assessment Procedures                                                                                                       |          |
| 6.12                                   | Control Equipment                                                                                                                |          |
| SECTION 7                              | REPORTING PROCEDURES                                                                                                             | 33       |
| 7.1                                    | Air Emissions Monitoring Reports                                                                                                 | 33       |
| <b>Figures</b> Figure 1 San            | mpling Point Location to Minimize the Effects of Disturbances                                                                    | 16       |
| Tables                                 |                                                                                                                                  | 1.4      |
|                                        | mpling Frequencies for AS Systems                                                                                                |          |
|                                        | mpling Type and Frequencies for SVE/VE Systems                                                                                   |          |
| Appendix A<br>Appendix B<br>Appendix C | Petroleum Air Emissions Guidance for Petroleum Remediation Sites Flo<br>Hazardous Air Pollutant (HAPs) Lists<br>Unit Conversions | owcharts |

# **IMPORTANT NOTICE**

Implementation of remedial systems that emit pollutants (e.g., soil vapor extraction, air stripper, vacuum enhanced recovery) without an air emissions assessment or with an assessment not first approved by the Department's Petroleum Remediation Section may result in reimbursement reduction of up to 100 percent. Furthermore, construction and operation of remedial systems exceeding the permitting threshold levels established in Title 129 – Nebraska Air Quality Regulations are subject to enforcement and possible penalties by the Department's Air Quality Division.

# **SECTION 1** LIST OF ACRONYMS AND CONTACTS

# 1.1 Applicable Acronyms

AS Air Stripper

AST Above Ground Storage Tank

BTEX Benzene, Toluene, Ethylbenzene and Xylenes

CAS Chemical Abstract Service

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

COC Chemical of Concern

DMR Discharge Monitoring Report (required under NPDES permit)

EPA United States Environmental Protection Agency

HAPs Hazardous Air Pollutants

ISCST Model Industrial Source, Complex, Short Term Model

LAST Leaking Aboveground Storage Tank
LUST Leaking Underground Storage Tank

M&I Municipal and Industrial MTBE Methyl Tertiary-Butyl Ether

NDEE Nebraska Department of Environment & Energy NPDES National Pollutant Discharge Elimination System

PRS Petroleum Remediation Section

PM Project Manager PTE Potential To Emit

QA/QC Quality Assurance/Quality Control

RAP Remedial Action Plan

RCRA Resource Conservation and Recovery Act

RP Responsible Party
SVE Soil Vapor Extraction
SSTL Site Specific Target Level

tpy Tons per year TV Total Volatiles

UST Underground Storage Tank
VC Volatile Compounds
VE Vacuum Extraction

VOCs Volatile Organic Compounds VRA Voluntary Remedial Action process Air Emissions Guidance for Petroleum Remediation Sites Nebraska Department of Environment & Energy Section 1 List of Acronyms and Contacts April 2019

# 1.2 NDEE Contacts

| Air Quality Permitting Section        | (4 | 402) 471-2189 |
|---------------------------------------|----|---------------|
| Air Quality Compliance Section        |    | 402) 471-2189 |
| Petroleum Remediation Section         | (4 | 402) 471-2186 |
| NPDES Permit Unit, Wastewater Section | (4 | 402) 471-4220 |
| NDEE W.1. '. D. ' 1.'                 | 1  |               |

NDEE Website: Pertinent regulations and

guidance documents http://deq.ne.gov

# **SECTION 2 INTRODUCTION**

# 2.1 Purposes and Use; Pre-approved Workplan

This document is guidance only and should not be construed as being regulation. The Nebraska Department of Environment & Energy (hereafter referred to as Department or NDEE) developed this guidance in response to concerns regarding potential Air Quality Construction and/or Operating Permit requirements. It also addresses risks of exposure to air emissions generated by the remediation of soil and ground water contaminated with petroleum hydrocarbons (hereafter referred to as petroleum) through the use of air strippers (AS), soil vapor extraction (SVE) systems, or other vacuum extraction (VE) systems that discharge pollutants to the air. For the purposes of this guidance, the term vacuum extraction includes any remedial technologies (e.g., bioventing, dual phase pump and treat) other than SVE that extract petroleum vapors from the subsurface and emit them to the atmosphere.

When followed, this guidance serves as a pre-approved workplan for compliance with air emissions requirements. Following this guidance means a separate workplan is not necessary. It also assures actions taken as explained in this document will be considered for reimbursement under Title 200 for eligible remediation projects. Alternative actions and methods may also be acceptable but will need Department approval prior to implementation.

# 2.2 General Information

This guidance is applicable to any petroleum remediation site, including those contaminated by leaking underground storage tanks (LUSTs), leaking aboveground storage tanks (LASTs), pipelines, or other petroleum storage and/or conveyance vessels. It is also intended to assist in the design of remediation systems to ensure that air emissions meet the requirements pertaining to the emissions of air pollutants at petroleum remediation sites. Unless approved by the Department, this guidance is not to be used to assess exposure risks for hazardous substance or hazardous waste remediation sites (e.g., CERCLA, RCRA, landfills, etc.), nor is it be used to evaluate risks for routine air emissions associated with stationary sources (e.g., factories, industries, etc.). This guidance is not applicable to situations determined by the Department to be emergencies until emergency conditions have been mitigated.

Applicable statutes and regulations include, but are not limited to:

- Petroleum Products and Hazardous Substances Storage and Handling Act §81-15,124(2);
- Title 118 Ground Water Quality Standards and Use Classification;
- Title 119 <u>Rules and Regulations Pertaining to the Issuance of Permits under the</u>
  National Pollutant Discharge Elimination System;
- Title 126 Rules and Regulations Pertaining to the Management of Wastes;
- Title 129 Nebraska Air Quality Regulations;
- Title 200 Rules and Regulations for Petroleum Release Remedial Action Reimbursement Fund.

Reasonable costs of remedial actions employed for the cleanup of petroleum releases from LASTs and LUSTs are eligible for reimbursement consideration under the Title 200

Air Emissions Guidance for Petroleum Remediation Sites Nebraska Department of Environment & Energy Section 2 Introduction April 2019

reimbursement program. Title 200 requires that the Department approves remedial actions taken at LUST and LAST sites in order for the work to be eligible for reimbursement consideration unless the work is performed under the Voluntary Remedial Action (VRA) process. Under the VRA process, all work performed is to follow all applicable rules and regulations to allow reimbursement consideration. Reimbursement consideration will be given according to the procedures as set out in Department guidance. If there is a desire to vary from this guidance while conducting remediation, then it is recommended that approval is first sought from the Department in order for the actions performed under VRA to remain eligible for Title 200 reimbursement. Emission assessments for both permitting and risk exposure are to be completed. The manner in which they are completed is generally left to the discretion of the responsible party (RP) or their representative, but the use of this guidance is strongly recommended as it can assist in the design of a remedial system.

Utilizing this standard guidance and Emissions Calculation Workbook provided on the Department's web page reduces review time for NDEE personnel. Should the responsible party (RP) or their consultant wish to propose evaluating air emissions using alternative methodologies, it is to be done by submitting the proposal, in detail and in writing, for review to the Petroleum Remediation (PR) Section prior to development of the Remedial Action Plan (RAP) for the site. At a minimum, it is to be justified that any emission alternative methodology will provide equal or better data than the methodologies provided and, at the same time, be of cost benefit. The Department will review alternative proposals on a case-by-case basis.

The AS portion of this document was developed in accordance with EPA document "AIR/SUPERFUND TECHNICAL GUIDANCE STUDY SERIES: Estimation of Air Impacts for Air Stripping of Contaminated Water" (EPA-450/1-91-02). In addition, much of this guidance is a collaborative effort of the Department's Air Quality Division and Petroleum Remediation Section (PRS) and its contractor. NDEE would like to also recognize the Health and Human Services Environmental Health Section for its assistance in developing the guidance for assessing risks posed by carcinogenic contaminants.

# 2.3 Air Construction and Operating Permit Assessments

AS and SVE/VE systems are considered air pollutant sources. If more than one AS and/or SVE/VE system is installed, the contaminant emissions are to be calculated for each system and summed in order to provide the total quantity of pollutants emitted at the site. That is, the quantity or emission rate of applicable pollutants determined from the sampling of each system's emission point is to be calculated and then summed for each sampling event. The resulting totals are then averaged over a "rolling" twelve-month period (Section 5.3). Applicable air pollutants to be evaluated are Volatile Organic Compounds (VOCs) and Hazardous Air Pollutants (HAPs), as designated by Title 129 Appendices II and III. The HAPs list is provided in Appendix B. If a petroleum remedial system is designed, operated, and/or, modified and sampled/monitored as described immediately below and summarized in Appendix A, it is approved and will not need Construction and Operating permits from the Department's Air Quality Division.

• The system is designed and operated in such a manner as not to exceed the potential annual emissions that would necessitate the need for construction and operating permits (Section 3.3).

- Samples are collected in the time periods established in Section 4.4 utilizing the analysis methods identified in Section 4.2 and 4.3.
- All air emissions sampling data are submitted in accordance with Section 7.0 Reporting Procedures.

### 2.4 Risk Assessment

For those carcinogenic compounds identified at a petroleum remediation site, exposure risk to the public due to air emissions is to be calculated based upon an excess cumulative cancer risk of 1x10<sup>-5</sup> (see SECTION 6). If air emissions pose a cumulative cancer risk less than or equal to 1x10<sup>-5</sup>, then the system design is approved for purposes of risk exposure. This process is summarized in Appendix A. Benzene, ethylbenzene, 1,2-dibromoethane, 1,2-dichloroethane, and naphthalene are typically the carcinogenic chemicals of concern (COCs) for petroleum, but others might be present and are to be considered. Carcinogens are indicated in the HAPs List provided in Appendix B. For sites utilizing both AS and SVE/VE systems, and/or more than one AS or SVE/VE system, the cancer risk calculated for each system is to be summed in order to provide the total cancer risk for the site. That is, the cancer risk for each system is to be determined individually, then summed, and averaged for all sampling events. If a petroleum remedial system (i.e., AS, SVE/VE, combined systems) is designed, operated, modified, and sampled/monitored as described immediately below, it is approved.

- The system is designed and operated in such a manner that the total emissions do not exceed a cumulative cancer risk of 1x10<sup>-5</sup> (see SECTION 6).
- Samples are collected in the time periods established in Section 4.4 utilizing the analysis methods identified in Section 4.2 and 4.3.
- All air emissions sampling data are submitted in accordance with SECTION 7, Reporting Procedures.

If an operating system generates emission concentrations greater than those allowed by the applicable permitting thresholds indicated in Section 3.3, and/or a cumulative cancer risk exceeding  $1 \times 10^{-5}$ , then it is to be reported to the PRS project manager (PM), and the remedial system is to be redesigned (e.g., raise the stack or reduce the stack diameter in accordance with Title 129, Chapter 16). If the system continues to emit pollutants at quantities greater than the applicable thresholds, then best engineering practices (i.e., emissions control/treatment or system design modifications) are to be used to ensure that the permitting thresholds and/or cancer risk are not exceeded.

### 2.5 Remediation System Construction

Remediation systems are to be designed using best engineering practices. For systems using SVE/VE technologies, it is worthy to note that using smaller diameter stacks (e.g., 2 to 4 inches) and increasing stack height will disperse emissions higher in the air column, thus being more protective of receptors.

Air Emissions Guidance for Petroleum Remediation Sites Nebraska Department of Environment & Energy Section 2 Introduction April 2019

NOTE: Hinged rain caps should be used on stacks in order to prevent precipitation from entering. "T" shaped or tent rain caps are not to be used as they greatly reduce vertical emissions dispersion.

NOTE: Implementation of AS and/or SVE/VE remedial systems without a permit evaluation and risk assessment or with an assessment not first approved by the Department's PRS may result in reimbursement reduction of up to 100 percent. Permitting and risk assessments are also to be performed regardless of whether or not the remediation project (e.g., gasoline release from a pipeline, transportation incident) is associated with an UST or AST. Furthermore, operation of a remedial system exceeding the permitting threshold levels established in Title 129 may lead to enforcement and possible penalties by the Department's Air Quality Division.

# **SECTION 3 AIR QUALITY REGULATIONS**

### 3.1 Introduction

This section provides an overview of Title 129 as it applies to AS and SVE/VE petroleum remediation systems. For additional information or questions, Title 129 should be reviewed, or the Department's Air Quality Permit Section should be contacted. If an AS and/or SVE/VE system is designed, operated, and modified as described in Section 2.2 of this guidance, it is approved and will not need Air Quality Construction and Operating Permits.

NOTE: Several laboratory methods for analyzing pollutants in air and water are referenced in this guidance. The most current version of each of the analysis methods is to be used.

### 3.2 Air Pollutants

Air pollutants emitted by AS and SVE/VE petroleum remediation systems are typically limited to VOCs and HAPs. Identification and quantification (estimate only) of contaminants are performed prior to submitting a remedial action plan (RAP).

# 3.3 Air Quality Construction Permit Requirements

If an air emissions source (e.g., petroleum remediation system) has the "potential-to-emit" (PTE) pollutants in quantities that exceed regulatory thresholds, an Air Quality Construction Permit is typically required prior to initiating construction activities. The NDEE Environmental Guidance Document 01-104 entitled "Acceptable Pre-construction Dirt Work" provides more information on what work may be conducted prior to receipt of a construction permit, and the NDEE Environmental Guidance Document 05-165 entitled "Air Quality Construction Permits" provides more information on the Air Quality Construction Permits.

The PTE is a theoretical quantity of emissions that would result if the remediation system operated 24-hours a day, 365 days a year (i.e., 8,760 hours per year) at the maximum flow rate of the equipment (e.g., blower, pump, compressor) without emission control devices (e.g., oxidizer, activated carbon). The regulatory thresholds applicable to an air emissions source in Nebraska are:

- PTE of 40 or more tons per year (tpy) of VOCs; or
- PTE of 2.5 or more tpy of any HAP; or
- PTE of 10 or more tpy of total HAPs.

For the purpose of this guidance, a "year" is defined as twelve consecutive calendar months and is represented by a rolling twelve month average (see Section 5.3).

Unfortunately, application of the PTE concept to AS and SVE/VE petroleum remediation systems is difficult because the flow-rates and concentrations of VOCs and HAPs vary throughout the system's operation and are difficult to predict or estimate.

The design and operation for petroleum remediation systems contained within this guidance document are intended to limit the PTE of the systems, whether they need PRS approval or not, to

Air Emissions Guidance For Petroleum Remediation Sites Nebraska Department of Environment & Energy Section 3 Air Quality Regulations April 2020

less than the regulatory thresholds contained in Title 129. Conformance with this guidance is intended to eliminate the need to obtain an Air Quality Construction Permit. Failure to follow the procedures described herein, or other mitigating circumstances, may trigger the regulatory requirement under Title 129 to obtain an Air Quality Construction Permit. The procedure for determining the need for Air Quality Construction Permits is summarized in Appendix A on the flowchart titled "NDEE Air Emissions Guidance for Petroleum Remediation Sites Permit Evaluation Flow Chart."

It is important to note that additional regulatory requirements may apply to petroleum remediation systems operating at facilities that have other air emission sources (e.g., industrial facilities). The additional emissions from the petroleum remediation system may alter a facility's air emission status, and the emissions may need to be tracked for the facility's air emission inventory. Additional information on air quality regulations is available on the NDEE website.

# <u>SECTION 4</u> <u>PERMIT-RELATED DATA COLLECTION</u>

# 4.1 What to Sample

# 4.1.1 Pre-Pump Test and/or Pre-SVE/VE Pilot Test

Up until now, the investigation has focused on petroleum chemicals of concern (COCs). It is not uncommon, however, to discover that hazardous substances (e.g., chlorinated compounds or other non-petroleum VOCs) have commingled with a petroleum plume either in the ground water, soils, or both. In order to determine prior to construction of the proposed remediation system what pollutants will be discharged to surface waters and/or emitted to the air, a ground water sample is to be collected from each of the following prior to performing a ground water pump test and/or SVE/VE pilot test:

- Monitor well up-gradient of source area(s); and
- Monitor well identified to contain the greatest dissolved phase contaminant concentrations during the assessment phase

The ground water samples are to be analyzed for an extended list (commonly referred to as Method 8260 full list) of VOCs by the methods described later in Section 4.2.1. If it is suspected that pollutants are present other than those included in the Method 8260 full list that need different analysis methods in order to quantify, then the proposed methods are to be submitted in writing to the PRS PM for approval. For all petroleum contaminated sites, whether they are eligible for Title 200 reimbursement or not, the ground water laboratory results are to be included in the pump test/pilot test work plan that is to be submitted to the PRS PM prior to RAP development. Lastly, the pollutants that are identified in the ground water are to be considered when applying for an NPDES permit to discharge treated water.

# 4.1.2 Pump Test and Pilot Test Sampling

According to Title 129, the PTE is to be determined. If a pump test or pilot test is performed, the analysis results are to be submitted in the RAP. If these tests are not conducted, the PTE and risk values for the remediation project will have to be determined using another method as determined by the RP/consultant and approved by the Department.

# 4.1.2.1 Pump Test Calculations for an AS

If an AS is proposed as part of the remediation system, pump tests are not to be conducted in areas where the ground water has been impacted. However, if no uncontaminated area is present, then the pump test is to be performed in an area of least contamination. This presents a problem for calculating/modeling the PTE. For calculating and modeling prior to the installation of the remediation system, see Section 5 for calculating and modeling the PTE values and Section 6.3 for risk calculations and modeling.

### 4.1.2.2 Pilot Test Calculations for SVE/VE

The PTE is to be determined for SVE/VE systems prior to system design. This information is collected when performing a pilot test in the area where SVE/VE wells

will be installed. Two methods to collect this information are presented below. Other approaches to collecting this data exist for the purpose of obtaining a good representation of the pollutant concentrations that could be potentially emitted. In any case, the method used is to be presented in the pilot test work plan.

- If it is feasible, the SVE blower is to be connected simultaneously to several of the wells used for the pilot test in the area where the ground water and/or soil concentrations fail the Site Specific Target Levels (SSTLs). If free product is present, at least one well in the pilot test as well as at least one with the greatest dissolved contaminant concentrations are to be included. The rest of the wells connected to the SVE blower should provide a good representation of moderate to significant contaminant concentrations. Air emissions are then collected from the SVE blower for laboratory analysis. The resulting contaminant concentrations are used in the PTE and risk calculations/modeling.
- If it is infeasible to connect the SVE blower to wells simultaneously, then vapor samples are to be collected from individual wells in the areas mentioned above. The concentrations for each pollutant from each sampling point is then totaled and averaged. The average concentration for each contaminant is then used to calculate/model the PTE and risk.

### 4.1.3 Operating System

### 4.1.3.1 Air Stripper

For operating AS systems, the water flow rates are measured and the ground water influent and effluent concentrations are determined using analysis methods for VOCs and TEH as gasoline, diesel, and oil (See Section 4.1.3.2 for exceptions). Measuring the water flow rate and the influent/effluent concentrations serves to provide an estimation of AS system emissions utilizing mass balance equations. The difference between the "influent concentrations times flow rate" and "effluent concentrations times flow rate" represents the contaminant mass stripped from the ground water by the AS system and emitted to the atmosphere.

To adequately quantify VOC and HAPs emissions, the operating remediation systems' air exhaust streams are to be measured and sampled for the following parameter:

• Exit air flow rate

The following information is also to be recorded:

- Water influent flow rate during operation (not the average flow rate, and not accounting for cycling);
- Cycling frequency and duration of AS operation;
- Exhaust stack height above ground level;
- Exhaust stack nominal inside diameter;
- Operational period covering influent and effluent samples; and
- System initial startup date.

Due to the fluctuations in concentration and flow, the humidity in the air stream does not need to be sampled, and the corresponding flow rate does not need to be corrected (i.e., the humidity correction factor should be insignificant compared to the error induced by other potential system fluctuations).

# 4.1.3.2 Vapor Extraction

To adequately quantify VOC and HAP emissions, the operating remediation systems' air exhaust streams are to be measured and sampled for the following parameters:

- Exit air flow rate: and
- Concentration of VOCs and HAPs.

The following information is to be recorded also:

- Exhaust stack height above ground level;
- Exhaust stack nominal inside diameter;
- Operational period for each effluent sampling result; and
- System initial startup date.

Due to the fluctuations in concentration and flow, the humidity in the air stream does not need to be sampled, and the corresponding flow rate does not need to be corrected (i.e., the humidity correction factor should be insignificant compared to the error induced by other potential system fluctuations).

# **Exceptions**

VOCs and HAPs air emissions analyses are not necessary at sites where it has been confirmed prior to performing pump and/or pilot tests (see Section 4.1.1) that only long-chained petroleum hydrocarbons are present (e.g., kerosene, fuel oils, JP-8, bunker oil, and other such heavy petroleum distillates). The ground water sampling and analysis methods described below are used to determine if heavy fuels/oils are the only pollutants present at a site.

# 4.2 VOCs Analysis Methods

VOCs are defined as compounds of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participate in atmospheric photochemical reactions (Title 129, Chapter 1, Section 160). However, some chemicals identified in the soil and ground water at petroleum remediation sites may be exempt from the definition of a VOC. For example, methane, acetone, and ethane are exempt because they have been demonstrated to have negligible photochemical reactivity. A complete list of exempted organic compounds can be found within 40 CFR 51.100(s)(1). Generally speaking, the pollutants emitted from the remediation of lighter petroleum distillates (e.g., gasoline, diesel fuel) are VOCs.

# **4.2.1** Ground Water Analysis Methods

The total VOC concentration (i.e., the sum of concentrations for all VOCs present) identified in the ground water can usually be approximated by combining the results of:

- EPA Method 8260 total scan (Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS);
- OA-2 (Extractable Petroleum Products and Related Low Volatility Organic Compounds) or SW-846 Method 8015B; and
- Method 8270 Semivolatile Organic Compounds by GC/MS.

### 4.2.1.1 Other Water Analysis Methods

The National Pollutant Discharge Elimination System (NPDES) program (Title 119) requires that treated water effluent samples be analyzed using methods approved in 40 CFR Part 136. The Department's NPDES program, however, does allow discharges from petroleum remediation systems under a general permit if certain conditions are met. The analysis methods to be used for determining the presence of pollutants and their concentrations are set forth in the general permit. Additional information may be obtained from the NPDES Permits and Compliance Section at 402-471-4220.

Questions regarding ground water analysis methods used for the purpose of monitoring the progress of petroleum remediation should be directed to the PRS.

# 4.2.2 Air Emission Analysis Methods

The total VOC concentration in air can be determined using:

- The analytical portion of EPA Method 25 Determination of Total Gaseous Nonmethane Organic Emissions as Carbon (Method 25);
- EPA Method 25A Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer (Method 25A); or
- EPA Method TO-3 (Method for the Determination of Volatile Organic Compounds in Ambient Air Using Cryogenic Pre-Concentration Techniques and Gas Chromatography with Flame Ionization and Electron Capture Detection).
   TO-3 is for more volatile constituents and might not adequately characterize emissions from diesel fuel and used oil (i.e., TO-3 might underestimate the VOC concentrations), so TO-3 is best used when it is known that the pollutants are comprised mostly or entirely of VOCs.

# 4.3 HAPs Analysis Methods

EPA has established certain chemicals and chemical groups as hazardous air pollutants (HAPs), generally due to their toxicity. The list of HAPs is included in Title 129, Appendix II, and is also included in Appendix B of this guidance along with an indication of which petroleum products might include HAPs as constituents. HAPs typically found in petroleum products at significant concentrations include, but are not limited to:

Air Emissions Guidance For Petroleum Remediation Sites Nebraska Department of Environment & Energy Section 4 Permit-Related Data Collection April 2020

- Benzene;
- Ethylbenzene;
- n-Hexane;
- Methyl tertiary-Butyl Ether (MTBE);
- Naphthalene;
- Toluene; and
- Xylenes.

Method 8260 (i.e., a total scan) is the principal method of choice for determining the concentration of each HAP in ground water at a petroleum remediation site. It is important to note that no single method is capable of identifying all of the HAPs. If other contaminants are suspected, but cannot be detected using Method 8260, the following additional analysis methods may be used following consultation and approval by the PRS PM:

- EPA Method 8270: Semi-Volatile Organic Compounds by GC/MS;
- EPA Method 8315: Determination of Carbonyl Compounds by High Performance Liquid Chromatography (HPLC);
- EPA Method 602: Purgeable Aromatics;
- EPA Method 624: Purgeables; and
- EPA METHOD 1624 Revision B: Volatile Organic Compounds by Isotope Dilution GC/MS.

Once the contaminants present in the ground water have been identified, the resulting concentration of each species of HAPs present in the air emissions can be determined using EPA Compendium Method TO-15 (Determination of VOCs in Air Collected in Specially-Prepared Canisters and Analyzed by GC/MS) or EPA Method 18 (Measurement of Gaseous Organic Compound Emissions by Gas Chromatography). Appendix B lists petroleum chemical compounds and corresponding analytical test methods as well as those for many of the HAPs.

# 4.4 When to Sample

# 4.4.1 AS Systems

### 4.4.1.1 Pre-System Startup

In order to determine the pollutant mass emitted to the air from an AS system, both the influent and effluent concentrations have to be considered in order to calculate the PTE. Since empirical data cannot be collected during a pump test, please see Sections 4.1.2.1 and 5.1 for guidance.

### 4.4.1.2 Post-System Startup

When an AS is used to treat contaminated ground water, Title 119 requires an NPDES permit to discharge the treated water to waters of the State. Treated water discharged to a sanitary sewer does not need an NPDES permit, but local officials should be contacted for approval and requirements. NPDES permits require sampling of the effluent every three months, and the information is to be submitted in quarterly Discharge Monitoring Reports (DMRs).

In order to quantify the emissions released and/or confirm the manufacturer's treatment efficiency of the AS system, influent samples are to be collected at the same time as effluent samples as specified in the NPDES permit.

Table 1. Sampling Frequencies for AS Systems

| MONTH                                                                                    | COMMENTS                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Between 7 and 30 days following system startup                                        | Collect both influent and effluent samples for air emissions calculations. Effluent sample results are also to be submitted in the DMR and every subsequent quarter as specified in the NPDES permit |
| 2.                                                                                       | Use sampling results from Month 1 for air emissions calculations                                                                                                                                     |
| 3. About 90 days following system startup                                                | Collect both influent and effluent samples for air emissions calculations                                                                                                                            |
| 4.                                                                                       | Use sampling results from Month 3 for air emissions calculations                                                                                                                                     |
| 5.                                                                                       | Use sampling results from Month 3 for air emissions calculations.                                                                                                                                    |
| 6. About 180 days following system startup                                               | Collect both influent and effluent samples for air emissions calculations.                                                                                                                           |
| 7.                                                                                       | Use sampling results from Month 6 for air emissions calculations.                                                                                                                                    |
| 8.                                                                                       | Use sampling results from Month 6 for air emissions calculations                                                                                                                                     |
| 9. About 270 days following system startup                                               | Collect both influent and effluent samples for air emissions calculations                                                                                                                            |
| 10.                                                                                      | Use sampling results from Month 9 for air emissions calculations.                                                                                                                                    |
| 11.                                                                                      | Use sampling results from Month 9 for air emissions calculations                                                                                                                                     |
| 12. About 360 days following system startup                                              | Collect both influent and effluent samples for air emissions calculations                                                                                                                            |
| Semi-annually sampling hereafter unless the conditions stated in 5.3 have been achieved. |                                                                                                                                                                                                      |

### 4.4.2 SVE/VE Systems

The following sampling frequencies are needed following system installation and startup, unless otherwise directed by the PRS PM. Following the sampling performed prior to and during the pilot test, monthly samples are to be collected about 30 days apart or in multiples of 30 days unless otherwise indicated. NDEE recognizes that remediation systems typically emit higher concentrations of contaminants at the startup than will be sustained during their operational period. Therefore, the concentrations collected during system startup do not need to be considered in either the permit or risk calculations. Summa canisters are to be used to collect air samples for the first month, sixth month, and twelfth month sampling events (see Section 5.3).

**Table 2.** Sampling Type and Frequencies for SVE/VE Systems

| MONTH                                                                           | SAMPLING<br>TECHNIQUE                | COMMENTS                                                              |
|---------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------|
| 1. Between 7 and 30 days of following system startup)                           | One hour Summa Canister              |                                                                       |
| 2. About 30 days following 1st month sampling event                             | Other recommended sampling technique |                                                                       |
| 3. About 30 days following 2nd month sampling event                             | Other recommended sampling technique |                                                                       |
| 4. About 30 days following 3rd month sampling event                             | Other recommended sampling technique |                                                                       |
| 5. About 30 days following 4th month sampling event                             | Other recommended sampling technique |                                                                       |
| 6. About 30 days following 5th month sampling event                             | One hour Summa Canister              |                                                                       |
| 7.                                                                              | No sampling needed                   | Use sampling results from Month 6 for calculations                    |
| 8.                                                                              | No sampling needed                   | Use sampling results from Month 6 for calculations                    |
| 9. About 90 days following 6th month sampling event                             | Other recommended sampling technique |                                                                       |
| 10.                                                                             | No sampling needed                   | Use sampling results from Month 9 for calculations                    |
| 11.                                                                             | No sampling needed                   | Use sampling results from Month 9 for calculations                    |
| 12. About 90 days following 9th month sampling event                            | One hour Summa Canister              |                                                                       |
| Semi-annually hereafter unless the conditions stated in 5.3 have been achieved. | Other recommended sampling technique | Use results from the last sampling event for the 6-month calculations |

# 4.5 Where to Sample

The appropriate sampling locations are necessary to obtain samples that are representative of the petroleum remediation system conditions. It is recommended that the following approaches to sampling be followed.

# **Cyclonic Flow**

Although cyclonic flow measurements are not needed at petroleum remediation systems, it is important to understand what affects cyclonic flow has upon the systems' sampling points. Therefore, sampling points (e.g., ports) in locations where cyclonic flow potentially exist are to be avoided.

Cyclonic flow is a swirling flow that occurs in pipes, ducts, and stacks usually because something about their construction is causing a disturbance; thus, measurements in such locations might provide inaccurate results. Where possible, sampling should not be performed at locations where

cyclonic flow typically occurs in pipe, duct, or stack locations. For petroleum remediation sites, however, cyclonic flow inspections are not needed, but sampling locations where cyclonic flow is expected are to be avoided.

To avoid cyclonic flow locations, sampling and/or velocity measurements are to be conducted at a point located at least eight stack, pipe, or duct diameters downstream and at least two diameters upstream from any flow disturbance such as a bend, expansion, or contraction in the stack or from a process vessel (Figure 1). These distances are for ideal conditions, but if necessary, alternative locations can be selected with less pipe diameters up and downstream of the sample point. It is recommended that the ratio between the downstream distance and the stack, pipe, or duct diameter remain approximately 4 to 1. For example, if the stack diameter is four inches, the downstream distance should be 16 inches (i.e., four inches multiplied by four).

### Stratification

Stratification occurs where different concentrations or velocities are present in certain areas of a pipe, duct, or stack. However, stratification across pilot test and remediation system exhaust stacks, pipes, or ducts is not expected to be significant because their diameters are typically less than twelve inches in diameter. It should also be noted that EPA Method 1 (i.e., Sample and Velocity Traverses for Stationary Sources) is not applicable to stacks, pipes, or ducts less than twelve inches in diameter.

Discharge

2 Diameters

8 Diameters

Bleed Air
Line

Flow

Flow

Blower or
Compressor

Knockout
Pot

Figure 1. Sampling point location to minimize the effects of disturbances

Air Emissions Guidance For Petroleum Remediation Sites Nebraska Department of Environment & Energy Section 4 Permit-Related Data Collection April 2020

# **Air Bleeding**

According to Title 129, Chapter 36, Section <u>001</u> - Control Regulations; Circumvention, When Excepted:

"No person shall cause or permit the installation or use of any machine, equipment, device or other article, or alter any process in any manner which conceals or dilutes the emissions of contaminants without resulting in a reduction of the total amounts of contaminants emitted."

However, allowing outside air to enter the vacuum side of the SVE/VE remediation system (often referred to as "air bleeding") is the method typically used to balance gas pressure within the system. When "air bleeding" is used, the VOC and HAP concentrations will be diluted by the "bleed air." This is allowed, however, only when it is conducted as part of the operation and optimization of the remediation system, but not with the intent of diluting the concentration of the contaminants emitted. If outside air is used to balance the system, the air flow rate is to be measured and recorded at the point where the air samples are collected during each sampling event.

### Vacuum Trucks

If a vacuum truck is used to perform an SVE/VE pilot test, the sampling point is best located upstream of the vacuum truck to avoid sampling of contaminants that might be present in the vacuum truck, but not in the subsurface. A sampling device capable of overcoming the vacuum pressure will be needed as well as control valves to allow testing at different vacuum pressures.

# 4.6 How to Sample

### Flow Rate

Flow rate monitoring may be conducted using an anemometer, Pitot tube, venturi, orifice plate, variable area flowmeter, or other methods approved by the NDEE Air Quality Compliance Section. Some measurement devices may be considered a disturbance if evaluating cyclonic flow. A continuous flow measurement device can be installed on the remediation system, but it is to be maintained as well as calibrated for each sampling event. The manufacturer's recommendations are to be followed when installing flow measurement devices such as properly aligning a hot-wire anemometer probe. During the sample collection, the emission flow rate through the stack is to be monitored and recorded. All manufacturers' directions are to be followed.

### **VOC and HAPs Concentrations**

VOC/HAPs samples are to be collected in accordance with the appropriate EPA method requirements. NDEE is not specifying that the sampling procedure set forth in EPA Method 25 be followed. For each method, air samples will be collected directly from the effluent air stream into an appropriate container for quantification through laboratory analyses. At a minimum, air samples collected for the one-month, six-month, and twelve-month sampling events are to be collected using batch-certified Summa canisters set to pull vacuum for a period of one hour. Tedlar bags may be used to collect air samples during sampling events when Summa canisters are not used, unless otherwise directed by the PRS PM. The first-year sampling results from Tedlar

Air Emissions Guidance For Petroleum Remediation Sites Nebraska Department of Environment & Energy Section 4 Permit-Related Data Collection April 2020

bags and Summa canisters are to be compared to determine if use of the Tedlar bags alone is acceptable, and the consultant is to make a recommendation to NDEE on future sampling methods. A decision will be made as to whether or not Tedlar bags alone are appropriate for future sampling.

Tedlar bag air samples can be collected either as grab or time-integrated samples. Tedlar bags need a mechanized filling device to collect a sample unless the sample point is under positive pressure. If the sample point is on the vacuum side of a piece of equipment (e.g., blower), the sampling equipment needs to have sufficient suction to overcome the vacuum induced by the system.

A Summa canister can be filled without the use of a pump if the sampling point is at ambient or positive pressure. In addition, Summa canisters can be equipped with a flow controller to allow time-integrated sampling such as the one-hour Summa canister sampling needed for the one-month, six-month, and twelve-month sampling events. When collecting a time-weighted sample, the consultant is to document the flow controller setting (one-hour, two-hour, etc.) and the starting and sample completion canister vacuum pressure.

NOTE: Samples collected in Tedlar bags that are not immediately analyzed in a mobile laboratory are to be analyzed by a laboratory within 72 hours of collection. NDEE requests that samples collected with Summa canisters are analyzed within a maximum of 30 days of collection. A shorter holding time might be necessary to ensure that Air Emission Monitoring Reports are submitted by the established compliance date (Section 7.1).

# 4.7 Pollutants to be Sampled

The chemicals to be monitored are those identified by laboratory analyses of the ground water collected in preparation for developing a RAP (see Section 4.1.1). In other words, those VOCs or HAPs identified in the ground water collected during the pilot test and/or pump test are to be included in the laboratory analytes for subsequent air emissions samples.

# 4.8 Quality Assurance and Quality Control

Because of the potential variability in the VOC and HAP concentrations over time due to rapid variations caused by changes in operating conditions, soil moisture, etc., there is no need for quality assurance and quality control samples such as duplicate samples (i.e., the sampling error is expected to be significantly less than the error associated with the temporal variability).

# **SECTION 5 PERMIT-RELATED CALCULATION METHODS**

### **5.1** Permit Emission Calculations

Several methods can be used to calculate the air emission quantities for remediation systems. The RP/consultant, in accordance with Title 129, Chapter 17, is responsible for choosing a method, which will provide an accurate estimate of potential emission quantities. An example method is provided below. The chosen method and associated calculations are to be provided as part of the RAP submitted to the PRS; however, the NDEE PRS's Air Emissions Calculation Workbook will perform all these calculations.

If the proposed remediation system uses more than one remediation technology (e.g., AS coupled with SVE/VE) that will emit pollutants to the atmosphere, then the permitting emission calculations for each system are to be derived individually and the sum of the results calculated to determine the total tonnage of pollutant(s) emitted. In addition, the calculation is to be completed for each pollutant and combination of pollutants.

The following permitting calculation procedures are provided as one method to determine the amount of emissions generated by the AS and/or SVE/VE systems. These procedures are based on data collected from a pump test and/or SVE/VE pilot test. If these tests were not conducted, the potential emissions from this remediation project will have to be determined using another method as determined by the RP/consultant and approved by the Air Quality Permitting Section.

### **AS System**

The equations use only three variables: (1) the designed system influent flow (pumping) rate (Q); (2) the maximum estimated influent pollutant concentration (C<sub>i</sub>) based the on ground water analysis; and (3) the minimum estimated effluent pollutant concentration (C<sub>e</sub>) based on system design efficiency. Prior to construction of the remediation system, Ce is based on NPDES discharge permit levels, or the system design efficiency where NPDES discharge permit levels are not available. Once the remediation system starts operation, the actual minimum effluent pollutant concentrations are used for C<sub>e</sub>. All other parameters used are either constants or derived from these variables. It is very important to represent the data in the units outlined in this document. For convenience and consistency, it is recommended that the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook, available on the NDEE website, be used as that will facilitate more effective Departmental review of this information. Specifically, the AS section of the *Emission Rate* worksheet can be used to calculate the emission rate, with this result being used in the tonnage equation below. There is a range of cells in the *Emission Totals* worksheet where the RP/consultant can enter a pollutant that is not on the default list of parameters. The worksheet will calculate the pounds per day emission rate, which can be converted by the user to tons per year.

### Parameters used:

ER = Pollutant emission rate (ug/sec)

Q = Influent flow (pumping) rate (L/sec)

C<sub>i</sub> = Estimated maximum influent pollutant concentration(s) (ug/L)

C<sub>e</sub> = Minimum effluent pollutant concentration(s) (ug/L)

Prior to system construction: NPDES discharge permit levels and/or system design efficiency

After system implementation: minimum effluent pollutant concentration(s)

X = Number of days of operation per year (twelve consecutive months)

86,400 = Seconds per day

 $2.205 \times 10^{-9}$  = Conversion factor (micrograms to pounds)

2,000 = Pounds per ton

T = Tons of pollutant per year

$$ER = Q * (C_i - C_e)$$

Tonnage Calculation:

$$T = \frac{ER * X * \left(86,400 \frac{\text{seconds}}{\text{day}}\right) * \left(2.205 * 10^{-9} \frac{\text{micrograms}}{\text{pound}}\right)}{\left(2,000 \frac{\text{pounds}}{\text{ton}}\right)}$$

### **SVE/VE System**

The equations use only two variables: the designed system exhaust airflow rate (Q) and the maximum pollutant concentration in the exhaust air stream  $(C_b)$ . (NOTE: This needs a pilot test.) All other parameters used are either constants or derived from these variables. It is very important to represent the data in the units outlined in this document, and for convenience and consistency, it is strongly recommended that the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook be used. Specifically, the venting section of the *Emission Rate* worksheet can be used to calculate the emission rate, with this result being used in the tonnage equation below.

### Parameters used:

ER = Pollutant emission rate (ug/sec)

Q = Exhaust air flow rate (L/sec)

 $C_b = Maximum pollutant concentration(s) in the exhaust air (ug/m<sup>3</sup>)$ 

X = Number of days of operation per year (twelve consecutive months)

86,400 = Seconds per day

 $2.205 \times 10^{-9}$  = Conversion factor (micrograms to pounds)

2,000 = Pounds per ton

T = Tons of pollutant per year

$$ER = \frac{Q * C_b}{1000 \, liter/m^3}$$

Tonnage Calculation:

$$T = \frac{ER * X * \left(86,400 \frac{\text{seconds}}{\text{day}}\right) * \left(2.205 * 10^{-9} \frac{\text{micrograms}}{\text{pound}}\right)}{\left(2,000 \frac{\text{pounds}}{\text{ton}}\right)}$$

# **5.2** Preliminary Permit Calculation Reporting Procedures

The emission calculations are to be submitted in the RAP as part of the pump test and/or the pilot test results.

# 5.3 Post-Implementation Permit Calculation Procedures for Reporting

On-going tonnage calculations (in tons per year) are to be performed in order to demonstrate that the system is being operated in such a manner that the emissions are not exceeding the permitting thresholds. The data is to be collected during the time intervals outlined in Section 4.4. However, treated effluent water from an AS is also to be collected at a frequency to comply with the system NPDES permit or municipality requirements (for sanitary sewer discharge). For each month, calculate the amount of pollutant emitted using calculations such as those provided above to determine a 12-month rolling average. For these calculations, assume that the system will operate during the next interval at the concentration and flow rate determined during the most recent sampling event as shown below. If the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook is used, the emission rates for the AS and VE are calculated for one sampling event on the *Emission Rate* worksheet. The corresponding risk calculations for that sampling event are automatically conducted and displayed on the *Risk Evaluation* worksheet. The user then transfers the emission rates and risk values from the *Emission* Rate and *Risk Evaluation* worksheets to the *Emission Totals* worksheet for that sampling event. For each subsequent sampling event, the user then transfers new emission rate and risk values to a new row on the Emission Totals worksheet. The user can then enter the start date and end date for the appropriate rolling 12-month average period in the "Averaging Period" cells of the *Emission Totals* worksheet to get the mass removed and average cancer risk for that period. If the user enters a 12-month period, the mass removed (displayed in pounds) can be converted to tons for the tpy value for reporting. The PTE calculations on the *Emission Totals* worksheet use the maximum value for estimating emissions from pilot test data.

Month 1 (collected at least 7 days and at most 30 days after system startup): represents the emissions concentrations for days 0 through 30 of the operation.

Month 2 (collected approximately 30 days after Month 1 sampling event): represents the emissions concentrations for days 30 through 60 of the operation, and so on through Month 5.

Month 6 (collected approximately 180 days after Month 1 sampling event): represents the emissions concentrations for day 180 through day 269 of operation.

Month 9 (collected approximately 270 days after Month 1 sampling event): represents the emissions concentrations for day 270 through day 365 days of operation.

Year 1 (collected approximately 365 days after Month 1 sampling event): represents the emissions concentrations for the first 6 months of the second year of operation, and so forth.

As long as the tons of pollutants emitted do not exceed the respective permitting criteria, the system may be operated as approved by the Department. Unless otherwise stated in the RAP or directed by the PRS PM, the sampling frequency may be reduced to semi-annual after one year if:

- Free product is not present nor has it been present for a period of one year;
- Sampling and analyses were performed as outlined in Sections 4.2, 4.3, and 4.4. Effluent sampling associated with the AS is to also be conducted as specified by the system NPDES permit or municipality requirements (for sanitary sewer discharge);
- Air monitoring reports were submitted with the appropriate information during the time frames described in SECTION 7; and
- The tons of pollutants emitted did not exceed 85 percent of the permitting thresholds, and the emissions did not exceed 85 percent of 1 x 10<sup>-5</sup> for the cumulative cancer risk for a period of at least one year.

# 5.4 Cessation of Air Emissions Sampling

If it is determined from two consecutive years of air monitoring data that the criteria above were achieved and there is nothing to indicate that contamination levels are increasing, a written request with supporting discussion and documentation is to be submitted to the PRS PM for considering the cessation of air emission sampling. The request is to be submitted as a brief written discussion supporting the discontinuation of sampling, which can be submitted with the air monitoring report due at the end of two years.

# **5.5** Control Equipment

If simple operational techniques are not sufficient in reducing emissions to the permitting thresholds, an emission control device might have to be installed. Such control devices can be categorized as "destructive" [e.g., catalytic oxidizers (CO), thermal oxidizers (TO), regenerative thermal oxidizers (RTO)], and "non-destructive" [e.g., granulated carbon canisters (GACs)].

Some vendors of destructive control devices claim destruction efficiencies of 98 to 99.9 percent as long as the equipment is installed and maintained according to their instructions. Although vendors might claim greater destruction efficiencies, a default destruction efficiency of no more than 98 percent is allowed for calculating allowable emission pollutant tonnage for both permitting and risk thresholds. Otherwise, the vendor's control efficiency data is to be used for efficiencies of less than 98 percent. A copy of the vendor's expected destruction efficiency pertinent to the device used is to be submitted with the RAP. VOC and HAPs samples are still to be collected upstream of the destructive control device for laboratory analysis in order to ascertain when the control device can be removed (see Section 4.4 for sampling frequencies).

Efficiencies for non-destructive control devices (e.g., GAC systems) vary considerably with moisture content in the air stream, temperature, contaminant concentration fluctuations, and the

Air Emissions Guidance For Petroleum Remediation Sites Nebraska Department of Environment & Energy Section 5 Permit-Related Calculation Methods April 2020

capture materials used within the device. Consequently, where non-destructive control equipment is used, emission samples for laboratory analysis are to be collected upstream and downstream of the device. In addition to calculating the total tonnage emitted, the total pollutant mass removed can be estimated using mass balance equations as well as determining when the use of the control device can be discontinued.

The RP may request the PRS PM for approval to cease operation of the emission control equipment using the same criteria listed in Section 5.4. The request is to be submitted as described in Section 5.4. The physical removal of a control device is to be coordinated with the PRS PM.

# <u>SECTION 6</u> <u>RISK ASSESSMENT</u>

### 6.1 Introduction

It is stated in §81-1504, "The department shall have and may exercise the following powers and duties: (32) To consider the risk to human health and safety and to the environment in evaluating and approving plans for remedial action...." As previously stated in Section 2.3, AS and SVE/VE systems used in the remediation of petroleum release sites, have the potential to emit carcinogenic contaminants into the atmosphere at concentrations that pose a risk to human health. This section provides guidelines for the assessment of excess cancer risks that these emissions might pose. This information is used to facilitate remediation system modifications (e.g., emission control devices, adjustments of pumping rate, modification of stack height, etc.), if necessary, in order to ensure the protection of public health. Carcinogens present at a petroleum release site are identified as specified in Section 4.1.

The most common carcinogens that are likely to be present in petroleum releases that have occurred in recent years are benzene, ethylbenzene, and naphthalene.

Other carcinogens used as gasoline additives in the past are: 1,2-dibromoethane (EDB) and 1,2-dichloroethane (1,2-DCA).

Common carcinogens that might have been released to the environment from other sources include: carbon tetrachloride, methylene chloride, vinyl chloride, tetrachloroethylene (PCE), trichloroethylene (TCE) among others.

Guidelines in this section will focus on these common carcinogens, but all contaminants identified in the extracted fluid (water and/or soil gas) are to be considered when preparing the RAP. The PRS PM may desire assessment of these additional contaminants. The list of the HAPs found in Appendix B identifies other chemicals considered carcinogens.

This section provides one method for performing a cancer risk assessment which is summarized in Appendix A. Use of these procedures and the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook available on the NDEE website will facilitate more effective Departmental review of this information. If these procedures are not used, the proposed alternative methods and procedures are to be provided in the RAP (detailed in writing) in order that NDEE personnel may determine if they are applicable and valid.

# 6.2 Data Collection and Sample Analysis Procedures

When gathering information for calculating the risk values for the construction permit (Section 4), analytical data is initially collected at the same time the pump test and/or pilot test is performed. When gathering information for calculating the risk values for an operating system, analytical data is collected at the times specified in SECTION 4.

In order to assess potential risks to public health from these emissions, the emitted air concentrations for each carcinogenic contaminant are to be determined using an air dispersion model, such as the SCREEN3 air dispersion model. The NDEE Petroleum Remediation Section Air Emissions Calculation Workbook that is located on the NDEE website makes use of a

SCREEN3 database in computing risk levels. It is recommended that the RP/consultant make use of this tool in calculating site risk which is discussed in more detail in Section 6.5 below. If another model is used, it is to be presented and discussed in the RAP.

# **6.3** Pre-system Implementation Assessment

The risk assessment data is to be collected at the same time as the permitting emission data (i.e., during a pump and/or pilot test) in order to assist with the development of the RAP prior to remediation system design. The following are data elements needed to determine the risk.

# **AS System Data Needs**

- The designed system influent flow (pumping) rate into the stripper. Commonly, this is not the ground water extraction rate as an AS is often cycled;
- AS batch treatment period per hour;
- Treatment building dimensions;
- The maximum estimated influent concentration for each carcinogen present, based on ground water analysis;
- The minimum effluent concentration for each carcinogen present (note: if an effluent sample has not been collected, use the NPDES discharge permit level where applicable, or estimate using the system design efficiency if an NPDES discharge permit level is not available);
- Height of exhaust stack (above ground level);
- Exhaust diameter;
- Exhaust flow rate;
- System start date;
- Estimated operating days for the life of the system (planned system run time);
- Distance to nearest building (including offsite) in each direction from the discharge stack; and
- Approximate dimensions of nearest building in each direction from the discharge stack.

# **SVE/VE System Data Needs**

- The designed system exhaust air flow rate;
- The maximum concentration for each carcinogen present in the exhaust air stream from each emission point;
- Height of exhaust stack (above ground level);
- Treatment building dimensions;
- Exhaust diameter;
- System start date;
- Estimated operating days for the life of the system (planned system run time);
- Distance to nearest building (including offsite) in each direction from the discharge stack; and
- Approximate dimensions of nearest building in each direction from the discharge stack.

# **Data Gathering Methods:**

• The sampling and analysis methods for water and air are discussed in Sections 4.2 and 4.3.

If the proposed remediation system uses more than one remediation technology (e.g., AS coupled with SVE/VE) that will emit pollutants to the atmosphere, then the risk emission calculations for each system are to be derived individually and the sum of the results calculated to determine the total risk posed by the pollutant(s) emitted. In addition, the calculation is to be completed for each pollutant and summed to obtain the cumulative risk.

# **6.4** Post-system Implementation

Since the risk assessment is based on a chronic exposure to carcinogens, the post-system implementation (operating) assessment is to be performed to determine the average concentration of each carcinogen present for each emission point (as is performed when determining potential exceedance of the permitting threshold quantities). The assessments for each emission point at a site are then summed to determine the total risk for the site. One or more of the modifications mentioned in Section 3.3 and 5.5 is to be implemented if the total cumulative risk exceeds  $1 \times 10^{-5}$  for the summation of the individual carcinogens.

The data elements discussed below are to be collected at the appropriate intervals discussed in Section 4.4.

### **AS Systems Data Needs**

- The average influent concentration entering the AS for each carcinogen detected at the site:
- The maximum effluent concentration exiting the AS for each carcinogen detected at the site (Note: the maximum effluent concentration may be calculated using the design efficiency of the AS model used by the remedial system);
- The total influent pumping rate (L/sec) for the AS; and
- Review for potential receptor changes (new construction or removal of homes) on nearby properties on an annual basis. Changed conditions necessitate updating the risk calculations.

# **SVE/VE Systems Data Needs**

- The concentration of each carcinogen in the air being extracted by the system;
- The volumetric flow rate at the point where the carcinogen sample is collected; and
- Review for potential receptor changes (new construction or removal of homes) on nearby properties on an annual basis. Changed conditions necessitate updating the risk calculations.

# **Data Gathering Methods**

- Water and air samples are to be analyzed by methods discussed in Sections 4.2 and 4.3; and
- Airflow rate is to be measured using the procedures discussed in Section 4.6.

If a non-destructive control device (e.g., granular activated carbon) has been installed, then the system data needs are to be collected and documented:

- Upstream of the emission control device; and
- Downstream of the emission control device.

Additional questions regarding air analysis methods approval should be directed to the Air Quality Compliance Section. Questions regarding water analysis methods approval should be directed to the PRS.

# 6.5 Determining the Air Dispersion Factors Using SCREEN3

The EPA SCREEN3 model is used in this assessment for determining the maximum ground-level concentration of a contaminant at a specified distance from the emission source. The model also simulates the effects of buildings upon dispersion of the contaminant plume as well as meteorological effects of fumigation, etc. The consultant/RP is encouraged to use NDEE PRS's Air Emissions Calculation Workbook, which will perform all these calculations that incorporates SCREEN3 modeling into risk assessment calculations for common scenarios. If the remedial system has unique operational features outside of most remediation systems, the Emission Rate Worksheet will direct the RP/consultant to "Re-check values or contact NDEE PRS." In these cases, the consultant will discuss with the PRS PM proposed design parameter modifications to ensure they are appropriate for the site. NDEE may also direct the consultant/RP to modify inputs to allow for use of the Workbook. Providing the proposed design parameters are appropriate for the site, NDEE may request the RP/consultant to use the SCREEN3 model to determine the 1-hour maximum air concentration to be used in the risk analyses.

With a set exhaust rate of 1 gram per second in the modeling, the Screen3 model 1-hour maximum air concentration serves as a dispersion factor in the calculations. In accordance with EPA protocol (EPA-454/R-92-019), the 1-hour maximum dispersion factor is converted to an annual average dispersion factor by the Average Annual EPA multiplying factor of 0.08.

The inputs into the SCREEN3 model that are built into NDEE's Emission Rate Worksheet are summarized in Table 3. Note that Table 3 uses the metric system in order to be standardized with the SCREEN3 model, but the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook inputs are in US units for the benefit of the RP/Consultant (conversions are available in Appendix C). RP/Consultant inputs to the spreadsheet are bolded.

Table 3. SCREEN 3 Model Inputs

| Parameter                                                            | Inputs or Ranges of Inputs                    |
|----------------------------------------------------------------------|-----------------------------------------------|
| Source Type                                                          | Point                                         |
| Terrain Options                                                      | Flat                                          |
| Fumigation                                                           | Inversion Break-up                            |
| Rural/Urban                                                          | Urban                                         |
| Meteorology                                                          | All Stab. & WS                                |
| Ambient Temperature (K)                                              | 293.15                                        |
| Mixing Heights                                                       | Regulatory                                    |
| Anemometer Height (m)                                                | 10                                            |
| Emission Rate (g/s)                                                  | 1                                             |
| Average Annual EPA Multiplying Factor                                | 0.08                                          |
| Stack Height (m)                                                     | 3, 6, 9, 12 (10, 20, 30, 39 ft)               |
| Stack Diameter <sup>(1)</sup> (m)                                    | 0.05, 0.10, 0.15, 0.20 (2, 4, 6, 8 inches)    |
| Exhaust Velocity (m/s)                                               | 0.91, 5.49, 10.06, 14.63, 19.2, 23.77         |
| Exhaust Flow Rate (m <sup>3</sup> /s)                                | Variable (CFM)                                |
| Exhaust Temperature <sup>(2)</sup> (K)                               | 293.15                                        |
| Building Height at roof peak(3) (m)                                  | 3, 5, 6, 8, 9, 12 (10, 16, 20, 26, 30, 39 ft) |
| Building Width perpendicular<br>to wind direction <sup>(4)</sup> (m) | 3, 6, 9, 23 (10, 20, 30, 75 ft)               |
| Building Length parallel<br>to wind direction <sup>(4)</sup> (m)     | 3, 6, 9, 23 (10, 20, 30, 75 ft)               |

Note 1: The largest stack diameter allowed in the Emission Rate worksheet is 8 inches (0.20 meters) in diameter. If the exhaust stack diameter is larger than 8 inches, then the RP/consultant enters an 8-inch stack diameter as a default. A notation is to be made to the NDEE PRS with RAP submittal.

Note 2: Exhaust temperature does not significantly affect the model results for the expected range of parameters, so a default value equivalent to the ambient temperature is used.

Note 3: Building dimensions apply to both the remediation system and adjacent buildings. If the offsite building exceeds 39 feet in height, then the RP/consultant is to contact the NDEE PRS for direction. A notation is to be made to NDEE with RAP submittal.

Note 4: If the building length or width dimensions exceed 75 feet, then the RP/consultant will use 75 feet as a default. A notation is to be made to the NDEE with RAP submittal.

# **6.6** Exposure Assessment

Exposure is defined as contact between a human and a chemical contaminant in the environment. The amount of contact is dependent on several factors including the chemical concentration and the frequency and duration of exposure. As such, an exposure assessment is an estimation of the magnitude, frequency, duration, and route of exposure.

To assess potential excess cancer risks at petroleum remediation sites, it is assumed that the receptor (human individual) is exposed to site contaminants 24 hours per day, 365 days per year,

for a period of 5 years. If the system will operate for a longer or shorter period, then the 5-year parameter will need to be adjusted accordingly. (Note: Continuous operation of the system is assumed, and parameters other than the Exposure Duration are not adjusted.)

# **6.7** Toxicity Assessment

The purpose of the toxicity assessment is to weigh available evidence regarding the potential for contaminants to cause adverse effects in exposed individuals and to provide an estimate of the relationship between the extent of exposure and the likelihood of these adverse effects occurring. For purposes of this assessment, cancer is the adverse effect that is assessed by determining the excess cancer risk that is estimated to be associated with the exposure to site contaminants.

The excess cancer risk resulting from exposure to a contaminant is described as the probability of an individual developing cancer in his/her lifetime (70 years) as a result of exposure to a carcinogen. The term "excess" is used to refer to the risk above the lifetime risk of developing cancer in the United States of one in two men and one in three women for all types of cancer (American Cancer Society, *Cancer Facts and Figures 2009*).

Toxicity data for the contaminants discussed in Section 6.1 are obtained from the EPA Regional Screening Levels Table. The toxicity values will be updated at a frequency deemed appropriate by the Department and a revised version of the Air Emissions Calculations Workbook will be posted on the NDEE website.

### 6.8 Risk Characterization

Risk characterization combines the results of the exposure and toxicity assessments to present an estimate of the excess carcinogenic risk associated with the exposure to site contaminants. To calculate the excess carcinogenic risk, the combined cancer risks are to be evaluated. If the excess cumulative cancer risk for the summation of individual risks exceeds  $1 \times 10^{-5}$ , then modifications (e.g., raising stack height, reducing the stack diameter, installation of a control device, etc.) to the system design are to be made and the risk recalculated.

# 6.9 Risk Calculation - AS Systems

The equations use only four variables: the influent flow (pumping) rate (Q), the influent carcinogen concentration ( $C_i$ ), the effluent carcinogen concentration ( $C_e$ ), and the modeled average annual dispersion factor ( $C_a$ ). (Note:  $C_a$  is developed through running the SCREEN3 model, which has been automated in the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook.) All other parameters used are either derived from these variables or are constants. For comparability purposes, the same method is to be used for both the influent and effluent carcinogen analysis. It is very important to represent the data in the units outlined in this document, and for convenience and consistency, it is recommended that the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook available on the NDEE website be used.

For a single AS emitting pollutants to the atmosphere, a risk assessment for each carcinogen emitted is derived. The risks for all carcinogens are then summed to provide the total cancer risk

for that AS. The total cancer risk is not to be greater than  $1 \times 10^{-5}$  when multiple carcinogens are present.

If more than one AS is used in the remediation system, then the individual and total cancer risks for all AS systems are totaled to provide the respective cancer risk for the site. Should SVE/VE be used in addition to AS, then the sum of risk assessments (see Section 6.4) for all SVE/VE emission points (derived for each carcinogen emitted and totaled) is added to that calculated for the AS system(s). The following equation is an example of solving for the total risk from one AS where only benzene is the carcinogen.

### Parameters used:

 $R_{as} = Cancer risk for the AS$ 

 $R_{tot} = Total site cancer risk$ 

 $C_a = Modeled$  average annual dispersion factor from SCREEN3 model (ug/m<sup>3</sup>) (g/sec)<sup>-1</sup>

 $C_i$  = Air stripper influent concentration of benzene (g/L)

C<sub>e</sub> = Air stripper effluent concentration of benzene (g/L)

IUR = Inhalation unit risk factor for benzene (ug/m<sup>3</sup>)<sup>-1</sup>

Q = Groundwater flow rate of full-scale system (L/sec)

X = Proposed duration of system operation (days)

25,550 = Continuous days of system operation in 70 years

ER Calculation:  $ER = Q *(C_i - C_e)$ 

Ras Calculation:

$$R_{\rm as} = (ER)(C_a)(IUR)\left(\frac{x}{25,550}\right)$$

 $R_{tot}$  Calculation (if necessary):  $R_{tot} = R_{as} + R_{sve}$ 

# 6.10 Risk Calculation - SVE/VE Systems

The equations use only two system variables: the system exhaust airflow rate (Q) and the carcinogen concentration in the exhaust air stream  $(C_b)$ . The risk calculation also makes use of the modeled average annual dispersion factor  $(C_a)$ . (Note:  $C_a$  is developed through running the SREEN3 model, which has been automated in the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook.) All other parameters used are either derived from these variables or are constants. It is very important to represent the data in the units outlined in this document and, for convenience and consistency; it is recommended that the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook, available on the NDEE website, be used.

For a single SVE/VE emitting pollutants to the atmosphere, a risk assessment for each carcinogen emitted is derived. The risks for all carcinogens are then summed to provide the total cancer risk for that SVE/VE. The total cancer risk is not to be greater than  $1 \times 10^{-5}$  for the total carcinogens present.

If more than one SVE/VE is used in the remediation system, then the total cancer risks for all SVE/VE systems are summed to provide the respective cancer risk for the site. Should an AS be used in addition to SVE/VE, then the sum of risk assessments (see Section 6.4) for all AS emission points (derived for each carcinogen emitted and totaled) is added to that calculated for the SVE/VE system(s). The following equation is an example of solving for the total risk from one SVE/VE where benzene is the only carcinogen.

### Parameters to be used:

ER = Pollutant emission rate (g/sec)

 $R_{sve}$  = Cancer risk for the SVE/VE emissions

 $R_{tot} = Total site cancer risk$ 

Q = Exhaust air flow rate for full scale system (L/sec)

C<sub>a</sub> = Modeled average annual dispersion factor from SCREEN3 model (ug/m<sup>3</sup>) (g/sec)<sup>-1</sup>

IUR = Inhalation unit risk factor for benzene (ug/m<sup>3</sup>)<sup>-1</sup>

X = Proposed duration of system operation (days)

25,550 = Continuous days of system operation in 70 years

# **Pre-system Implementation**

•  $C_b = Maximum benzene concentration of the exhaust system (g/L)$ 

### **Post-system Implementation**

•  $C_b$  = Average benzene concentration of the exhaust system (g/L) with the startup results excluded

ER Calculation: 
$$ER = Q * C_h$$

R<sub>sve</sub> Calculation:

$$R_{sve} = (ER)(C_a)(IUR)\left(\frac{x}{25,550}\right)$$

$$R_{tot}$$
 Calculation (If necessary):  $R_{tot} = R_{as} + R_{sve}$ 

### **6.11** Risk Assessment Procedures

The following procedures are to be used to determine the risk at the site. For sites that incorporate more than one type of remediation system (e.g., AS, SVE/VE), the risk for all systems is to be summed on both an individual and total carcinogen basis.

### **Pre-system Installation**

When conducting the initial cancer risk assessment, the greatest cancer risk value calculated is used employing the aforementioned procedures. If  $R_{tot}$  is greater than  $1x10^{-5}$ , the RP/consultant should be prepared to operate or modify the system design in such a manner that the risk factor will not be exceeded (e.g., reducing operating times or flow rates, or installing control equipment).

If the  $R_{tot}$  is less than or equal to  $1x10^{-5}$  prior to system installation, then the remediation system may be installed and operated in accordance with the approved RAP.

### **Post-system Installation**

Subsequent cancer risk assessments are to be reevaluated after every sampling event outlined in Section 4.4 of this document. Since this assessment is based on chronic exposure to a carcinogen, individual cancer risks are to be summed for every emission point on site (i.e., that is every AS and/or SVE/VE) and then the individual risks summed to obtain the cumulative risk (total risk). The total risk can then be averaged by dividing the sum of the total risks by the number of sampling events (excluding the startup results). If multiple carcinogens are present, then the individual risk is to be calculated for each carcinogen and summed to obtain the cumulative risk. If the cumulative average total risk is greater than  $1 \times 10^{-5}$  for carcinogens emanating from all emission points, then modifications may be needed.

The RP/consultant is encouraged to use the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook to evaluate the ongoing risk as a result of remediation activities. With each new sampling event, the RP/consultant should update the *Emission Rate* worksheet, which automatically calculates the risk in the *Risk Evaluation* worksheet. The data results of the *Emission Rate* worksheet and the *Risk Evaluation* worksheet are then entered into the *Emission Totals* worksheet which will compute the combined excess lifetime cancer risk for a user-defined averaging period.

As long as the  $R_{tot}$  is less than or equal to  $1x10^{-5}$ , the system may be operated, as approved by NDEE. If not otherwise directed by the PRS PM, the sampling frequency may be reduced to semi-annual if the following criteria are met:

- The sampling and analysis were performed as outlined in Sections 4.2 and 4.3;
- Air monitoring reports were submitted with the appropriate information and during the time frames described in SECTION 7;
- Free product is not present nor was it present for a period of one year; and
- Emissions did not exceed 85 percent of the combined excess lifetime cancer risk of  $1 \times 10^{-5}$  for the total carcinogens present for a period of at least one year.

If it is determined from two consecutive years of air monitoring data that the criteria above were achieved and there is nothing to indicate that contamination levels are increasing, the RP or consultant is to submit a written request with supporting discussion and documentation to the PRS PM for considering the cessation of air emission sampling.

# **6.12** Control Equipment

See Section 5.5 for guidance pertaining to emission control devices.

# **SECTION 7 REPORTING PROCEDURES**

A summary of the permitting and excess cancer risk data and calculations is to be included as part of the RAP. The RP/consultant is encouraged to use the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook and submit the *Emission Rate* and *Risk Evaluation* worksheets with the RAP.

The RP/consultant is also encouraged to use the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook to evaluate the ongoing risk and total emissions. The Worksheets are to be submitted as part of monitoring report submittals.

If it is determined through sampling that the emission of contaminants from an operating remediation system will exceed the Construction and Operating Permit threshold levels (Section 3.3) and/or the allowable excess cancer risk values (SECTION 6), the PRS PM is to be contacted by the close of the next working day.

# 7.1 Air Emissions Monitoring Reports

Air Emissions Monitoring Reports can be submitted in a combined format with any other report (e.g., ground water monitoring) due near the same time. The Air Emissions Monitoring Reports are to include: narrative, calculations, NDEE Petroleum Remediation Section Air Emissions Calculation Workbook, analytical summary tables, laboratory analytical reports, chromatograms, and chain-of-custody forms, and submitted per the following schedule, unless otherwise directed:

- <u>First Air Emissions Monitoring Report</u> submitted on or before the last working day of the **7th month** following system startup. The report is to include the emissions sampling results collected 7 days after startup of the system through 6 months of operation. The startup emissions sample results collected 7 days after startup are also to be included in the report, but not used in the calculations.
- <u>Second Air Monitoring Report</u> submitted on before the last working day of the **13th month** following system startup. The report is to include the emissions sampling results collected after 9 and 12 months of system operation following system startup in addition to that information submitted in the first report.
- Third Air Emissions Monitoring Report submitted on or before the last working day of the **19th month** following system startup. The report is to include the emissions sampling results collected after 18 months of system operation following system startup in addition to information submitted in the previous reports.
- <u>Fourth Air Emissions Monitoring Report</u> submitted on or before the last working day of the **25th month** following system startup. The report is to include the emissions sampling results collected after 24 months of system operation following system startup in addition to information submitted in the previous reports.

 Air emissions sampling events and monitoring report submittals are to continue every 6 months unless otherwise directed or the criteria discussed in Sections 5.3 and 5.4 are met.

If the emissions from an operating system exceed 85 percent of the permitting and/or risk exposure thresholds at any time, contact the PRS PM to discuss if more frequent sampling is necessary.

The emissions for the permitting tonnages are to be equal to or less than the permitting thresholds over a period of time equal to one year. When determining the emissions for the first year, the most current sampling results (in tons) are added to the results of the previous months to provide the total emission tonnages.

$$T_{tot} = SE_1 + SE_2 + SE_3 + SE_4 + SE_5 + SE_6 + SE_6 + SE_6 + SE_9 + SE_9 + SE_9 + SE_{12}$$

 $T_{tot}$  = twelve-month total tonnage

SE<sub>n</sub> = sampling event concentrations (in tons) for month "n" (NOTE: SE<sub>6</sub> sample results (in tons) are substituted for those in months 7 and 8; and SE<sub>9</sub> sample results (in tons) for those in months 10 and 11, unless otherwise directed.)

As permitting emission sampling continues beyond the first twelve-month period, the most current sampling result (in tons) is added to those of the previous eleven months to provide a rolling twelve-month total tonnage.

$$T_{rtot} = SE_2 + SE_3 + SE_4 + SE_5 + SE_6 + SE_6 + SE_6 + SE_9 + SE_9 + SE_9 + SE_{12} + SE_{12}$$

 $T_{rtot}$  = rolling twelve-month total tonnage

 $SE_n$  = sampling event concentrations (tons) for month "n" (NOTE: no more than 12 months of results are ever summed;  $SE_{12}$  sample results (in tons) are substituted for those in months 13, 14, 15, 16 and 17; and  $SE_{18}$  results (in tons) for those in months 19, 20, 21, 22, and 23, unless otherwise directed.)

The emissions for the average total cancer risk levels at a site are to be equal to or less than  $1x10^{-5}$  for the total number of carcinogens for a period of time equal to one year. When determining the risk for the first year, the cumulative total risk values for each month are summed and then divided by the number of months that have passed since operation has started in order to provide the most current average cumulative risk.

$$C_{ave} = \frac{\left(SE_1 + SE_2 + SE_3 + SE_4 + SE_5 + SE_6 + SE_6 + SE_6 + SE_9 + SE_9 + SE_9 + SE_{12}\right)}{N_{SE}}$$

 $C_{ave}$  = twelve-month average total risk

SE<sub>n</sub> = sampling event total risk for month "n" (NOTE: SE<sub>6</sub> results are substituted for those in months 7 and 8; and SE<sub>9</sub> results for those in months 10 and 11, unless otherwise directed.)

N<sub>SE</sub> = the number of months (not to exceed 12)

Air Emissions Guidance For Petroleum Remediation Sites Nebraska Department of Environment & Energy Section 7 Reporting Procedures April 2020

As emission sampling continues beyond the first twelve-month period, the total risk from the most current sampling results are averaged with the results of the previous eleven months.

$$C_{rave} = \frac{\left(SE_2 + SE_3 + SE_4 + SE_5 + SE_6 + SE_6 + SE_6 + SE_9 + SE_9 + SE_9 + SE_{12} + SE_{12}\right)}{12}$$

 $C_{rave}$  = twelve-month rolling average total risk

 $SE_n$  = sampling event total risk for month "n" (NOTE:  $SE_{12}$  results are substituted for the risk in months 13, 14, 15, 16 and 17 and  $SE_{18}$  results for the risk in months 19, 20, 21, 22, and 23, unless otherwise directed.)

Example worksheets from the NDEE Petroleum Remediation Section Air Emissions Calculation Workbook are provided on the following pages. The Workbook is available in Excel format for download from the Department's website at <a href="http://deq.ne.gov/Publica.nsf/Pubs">http://deq.ne.gov/Publica.nsf/Pubs</a> <a href="PetRem.xsp">PetRem.xsp</a>.

#### INSTRUCTION WORKSHEET



## Petroleum Remediation Section Air Emissions Calculation Workbook Vapor Extraction (VE) and/or Air Stripper (AS) Instructions

v. 4/7/2020

This Workbook is used to assess lifetime cancer exposure risk from remediation system air emissions. It can be used for vapor extraction systems (VE) and air strippers (AS), either individually or concurrently, to evaluate risk from individual contaminants and from a mixture of contaminants based on common toxicological endpoints, including excess lifetime cancer risk. VE air emissions are measured directly from the discharge stack whereas AS emissions are calculated using an average water flow rate through the air stripper and contaminant concentrations in pre- and post-treatment water samples (i.e., influent and effluent, respectively). Additional information regarding the air emissions screening process, including sampling protocols, is provided in the *Air Emissions Guidance For Petroleum Remediation Sites* (03-151).

Chronic risk is based on maximum annual average air concentrations compared to chronic toxicity values (or inhalation unit risk for excess lifetime cancer risk). Air concentrations are determined by air dispersion modeling using measured emission rates that are appropriate for the given time frame.

For site-specific modeling, complete the *Emission Rate* worksheet by entering data in green and yellow-shaded cells for site information, system parameters, neighboring building dimensions, and analytical results.

Enter values within the VE and/or AS Parameters cells for:

- > Stack: height, diameter, flowrate
- > Building Dimensions for Remediation Building: height to peak, width and length
- Neighboring Building Dimensions for the nearest buildings in each direction if located within a half-mile of the stack: distance from the stack, height to peak, width, and length.
- > AS water flow rate and minutes per hour it operates

Enter VE and/or AS Emission Concentration analytical results. Non-detect analytical results should be entered as zero concentrations.

The SCREEN3 Model Input parameters and the model values used are provided on the Table 1 Worksheet. Values entered on the *Emission Rate* worksheet determine the closest conservative value used for the Stack Height, Stack Diameter, Exhaust Velocity, and Building Dimension parameters.

When all required data have been entered in the *Emission Rate* worksheet, the *Risk Evaluation* worksheet can be used to evaluate risk from individual compounds. In general, total excess lifetime cancer risk is not to exceed 1.0E-5. The additive results are shown with two decimal points, which is intended to show transparency with the addition of risk but not to imply a level of precision greater than one significant figure. Risk managers may want to round to one significant figure when comparing to a cancer risk of 1.0E-5. Exceedance of these levels, which are bolded in text when met or exceeded, may require air emission controls.

The *Emission Totals* worksheet is used to evaluate Potential to Emit (PTE) based on the largest emission rates, removal rates (lbs/day), and removal quantities (lbs) during specific periods of operation. Data for the standard NDEE Risk-Based Corrective Action (RBCA) Chemicals of Concern (COCs) can be transferred automatically from the *Emission Rate* and *Risk Evaluation* worksheets. Data for other COCs must be entered manually or copied from the *Emission Rate* worksheet. The *Emission Totals* worksheet allows for up to 24 sampling events. If more events are required, the oldest records can be transferred to the *Emission Archive* sheet where they still will remain available for averaging calculations.

When submitting results to the NDEE in applicable reports, provide copies of the *Emission Rate*, *Risk Evaluation*, and *Emission Totals* worksheets for each sampling event.

#### EMISSION RATE WORKSHEET EXAMPLE

| NEBRAS                                                         | SKA .                    | Petr                       | oleum Remedi                    | ation S           | Section       | Air En                       | nissio   | ns Calcula                                            | ation Wo                                              | rkbook                             |            |                         | v. 4/7/2020 |
|----------------------------------------------------------------|--------------------------|----------------------------|---------------------------------|-------------------|---------------|------------------------------|----------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------|------------|-------------------------|-------------|
| Good Life. Great Envi                                          |                          |                            | por Extraction (                | •                 |               |                              |          |                                                       |                                                       |                                    |            | _                       |             |
| Dept. of Environment<br>Facility Name                          | t & Energy               | NOTE: GREEN CELLS W        | ILL NOT GENERALLY NEE           | Enter VE P        |               | EN EVENT                     | S. YELLO | W CELLS ARE MO                                        |                                                       | Enter AS Parame                    |            | S.                      |             |
| Location                                                       |                          | Somewhere, NE              |                                 | Lines VL          | aramotoro     |                              |          | AS Water Flow                                         | Rate (gal. per                                        |                                    | 1010       | 50.0                    |             |
| Program ID                                                     |                          | 000111                     |                                 |                   |               |                              |          | AS Treatment                                          | Period (minute                                        |                                    |            | 60                      |             |
| NDEQ ID Consultant Project No.                                 |                          | 010101-XX-0800<br>01121213 | VE Stack Height (feet abo       | Stack Dim         |               | 1                            | 5        | AS Stack Heigh                                        | t (feet above gro                                     | Stack Dimension                    | ns         | 15                      | 5           |
| Consultant Company                                             |                          | ABC Environmental          | VE Stack Diameter (inche        | rs):              | , voij.       |                              | <u> </u> | AS Stack Diame                                        |                                                       | Juna lovoly.                       |            | 8.0                     |             |
| Prepared By                                                    |                          | John                       | VE Stack Flow Rate (CFN         | Λ) <sup>a</sup> : |               |                              | 2        | AS Stack Flow I                                       | Rate (CFM) <sup>a</sup> :                             |                                    |            | 40                      | 0           |
| Reviewed By<br>Sample Date                                     |                          | Sue<br>2/1/2010            | Building-Mo                     | unted Stack       | k Building D  | imensions                    |          | +                                                     | Ruilding Mo                                           | unted-Stack Build                  | ling Dimen | sions                   |             |
| Planned System Run Time                                        | (days):                  | 365                        | Building Height (feet):         | unteu otaci       | k Dullullig D | 12                           |          | Building Height                                       |                                                       | unteu-otack Build                  | ing Dille  | 12                      |             |
| Notes:                                                         |                          |                            | Building Width (feet):          |                   |               | 10                           |          | Building Width (                                      | feet):                                                |                                    |            | 10                      |             |
|                                                                |                          |                            | Building Length (feet):         |                   | i. 5:         | 20                           |          | Building Length                                       |                                                       |                                    |            | 20                      |             |
|                                                                |                          |                            | Direction                       | boring Build      | E E           | S                            | w        | Direction                                             | Neign                                                 | boring Building Di<br>N            | E E        | s                       | w           |
|                                                                |                          |                            | Distance (feet):                | 5                 | 20            | 60                           | 50       | Distance (feet):                                      |                                                       | 5                                  | 20         | 60                      | 50          |
|                                                                |                          |                            | Height (feet):                  | 10                | 10            | 15                           | 15       | Height (feet):                                        |                                                       | 10                                 | 10         | 15                      | 15          |
|                                                                |                          |                            | Width (feet):<br>Length (feet): | 15<br>40          | 75<br>50      | 20<br>60                     | 30<br>35 | Width (feet):<br>Length (feet):                       |                                                       | 15<br>40                           | 75<br>50   | 20<br>60                | 30<br>35    |
|                                                                |                          |                            | VE Parameter Check              |                   | eck values or |                              |          | AS Parameter                                          | Check                                                 |                                    | VALII      |                         | - 00        |
|                                                                | RBCA COCs Only           |                            |                                 |                   |               |                              |          | AS Influent                                           | AS Effluent                                           |                                    |            |                         |             |
| Cancer Risk HAP/VOC                                            | RBCA COCS OTHY           | CAS#                       | VE Emission Concer              | ntration          | VE            | Emission R                   | ate      | Groundwater<br>Concentration                          | Groundwater<br>Concentration                          | Removal Factor<br>(dimension-less) | AS         | Emission Ra             | ite         |
|                                                                | Clear COC Data           |                            | (µg/m³) <sup>b</sup>            |                   |               | (µg/sec)                     |          | (µg/L) <sup>b</sup>                                   | (μg/L) <sup>b</sup>                                   | (diriterision-less)                |            | (µg/sec)                |             |
| Acetaldehyde                                                   |                          | 75-07-0                    | 2,793                           |                   |               | Velocity Too                 |          | 2,204                                                 | 5                                                     | 1.00                               |            | 6.94E+03                |             |
| 2-Acetylaminofluorene                                          | -                        | 53-96-3                    | 2,362                           |                   | Exit          | Velocity Too                 | High     | 1,370                                                 | 5                                                     | 1.00                               |            | 4.31E+03                |             |
| Acrylamide<br>Acrylonitrile                                    |                          | 79-06-1<br>107-13-1        | 1,412<br>428                    |                   |               | Velocity Too<br>Velocity Too |          | 3,030<br>2,982                                        | 5                                                     | 1.00                               |            | 9.54E+03<br>9.39E+03    |             |
| Acrylonitrile<br>Allyl Chloride                                |                          | 107-05-1                   | 3,166                           |                   |               | Velocity Too                 |          | 2,806                                                 | 5                                                     | 1.00                               |            | 8.83E+03                |             |
| 4-Aminobiphenyl                                                |                          | 92-67-1                    | 535                             |                   | Exit          | Velocity Too                 | High     | 1,796                                                 | 5                                                     | 1.00                               |            | 5.65E+03                |             |
| Aniline                                                        |                          | 62-53-3<br>56-55-3         | 3,330<br>1,657                  |                   |               | Velocity Too<br>Velocity Too |          | 3,084<br>3,670                                        | 5<br>5                                                | 1.00                               |            | 9.71E+03<br>1.16E+04    |             |
| Benz(a)anthracene<br>Benzene                                   |                          | 71-43-2                    | 3,361                           |                   |               | Velocity Too                 |          | 572                                                   | 5                                                     | 0.99                               |            | 1.79E+03                |             |
| Benzidine                                                      |                          | 92-87-5                    | 3,628                           |                   | Exit          | Velocity Too                 | High     | 1,625                                                 | 5                                                     | 1.00                               |            | 5.11E+03                |             |
| Benzo(j)fluoranthene                                           |                          | 205-82-3<br>50-32-8        | 2,176<br>563                    |                   |               | Velocity Too<br>Velocity Too |          | 3,004<br>2,406                                        | 5                                                     | 1.00<br>1.00                       |            | 9.46E+03<br>7.57E+03    |             |
| Benzo(a)pyrene<br>Benzo(b)fluoranthene                         |                          | 205-99-2                   | 1,983                           |                   |               | Velocity Too                 |          | 1,400                                                 | 5                                                     | 1.00                               |            | 4.40E+03                |             |
| Benzo(k)fluoranthene                                           |                          | 207-08-9                   | 2,509                           |                   | Exit          | Velocity Too                 | High     | 2,596                                                 | 5                                                     | 1.00                               |            | 8.17E+03                |             |
| Benzyl chloride<br>Bis(chloromethyl)ether                      |                          | 100-44-7<br>542-88-1       | 1,282<br>3,219                  |                   |               | Velocity Too<br>Velocity Too |          | 1,335<br>3,201                                        | 5<br>5                                                | 1.00                               |            | 4.20E+03<br>1.01E+04    |             |
| Bis(2-ethylhexyl)phthalate (D                                  | EHP)                     | 117-81-7                   | 2,395                           |                   |               | Velocity Too                 |          | 3,753                                                 | 5                                                     | 1.00                               |            | 1.18E+04                |             |
| Bromodichloromethane                                           |                          | 75-27-4                    | 3,496                           |                   | Exit          | Velocity Too                 | High     | 1,156                                                 | 5                                                     | 1.00                               |            | 3.63E+03                |             |
| Bromoform                                                      |                          | 75-25-2                    | 2,758<br>1,214                  |                   |               | Velocity Too<br>Velocity Too |          | 3,732                                                 | 5                                                     | 1.00                               |            | 1.18E+04<br>6.94E+03    |             |
| 1,3-Butadiene<br>Ethylbenzene                                  |                          | 106-99-0<br>100-41-4       | 3,514                           |                   |               | Velocity Too                 |          | 2,206<br>1,852                                        | 5<br>5                                                | 1.00                               |            | 5.82E+03                |             |
| Ethylene Oxide                                                 |                          | 75-21-8                    | 2,698                           |                   | Exit          | Velocity Too                 | High     | 2,098                                                 | 5                                                     | 1.00                               |            | 6.60E+03                |             |
| Ethyleneimine<br>Formaldehyde                                  |                          | 151-56-4<br>50-00-0        | 2,137<br>1,589                  |                   |               | Velocity Too<br>Velocity Too |          | 1,963<br>1,764                                        | 5<br>5                                                | 1.00                               |            | 6.18E+03<br>5.55E+03    |             |
| Methylene chloride (Dichloro                                   | methane)                 | 75-09-2                    | 912                             |                   | Exit          | Velocity Too                 | High     | 2,003                                                 | 5                                                     | 1.00                               |            | 6.30E+03                |             |
| Methyl-tert-butyl ether (MTBI                                  | E)                       | 1634-04-4                  | 1,259<br>2,234                  |                   |               | Velocity Too                 |          | 2,530                                                 | 5                                                     | 1.00                               |            | 7.97E+03                |             |
| Naphthalene<br>Nitrobenzene                                    |                          | 91-20-3<br>98-95-3         | 3,590                           |                   |               | Velocity Too<br>Velocity Too |          | 915<br>2,618                                          | 5                                                     | 0.99<br>1.00                       |            | 2.87E+03<br>8.24E+03    |             |
| 4-Nitropyrene                                                  |                          | 57835-92-4                 | 2,111                           |                   | Exit          | Velocity Too                 | High     | 1,716                                                 | 5                                                     | 1.00                               |            | 5.40E+03                |             |
| N-Nitrosodimethylamine<br>N-Nitroso-N-methylurea               |                          | 62-75-9<br>684-93-5        | 747<br>1,952                    |                   |               | Velocity Too<br>Velocity Too |          | 3,061<br>2,958                                        | 5<br>5                                                | 1.00<br>1.00                       |            | 9.64E+03<br>9.31E+03    |             |
| N-Nitrosomorpholine                                            |                          | 59-89-2                    | 2,419                           |                   | Exit          | Velocity Too                 | High     | 3.229                                                 | 5                                                     | 1.00                               |            | 1.02E+04                |             |
| Pentachlorophenol<br>Polychlorinated Biphenyls                 |                          | 87-86-5<br>1336-36-3       | 444<br>633                      |                   |               | Velocity Too<br>Velocity Too |          | 1,099<br>740                                          | 5<br>5                                                | 1.00<br>0.99                       |            | 3.45E+03<br>2.32E+03    |             |
| Propylene Oxide                                                |                          | 75-56-9                    | 1,514                           |                   | Exit          | Velocity Too                 | High     | 818                                                   | 5                                                     | 0.99                               |            | 2.57E+03                |             |
| 1,1,2,2-Tetrachloroethane<br>Tetrachloroethylene (PCE)         | ·                        | 79-34-5<br>127-18-4        | 380<br>2,627                    |                   |               | Velocity Too<br>Velocity Too |          | 2,216<br>2,240                                        | 5                                                     | 1.00<br>1.00                       |            | 6.97E+03<br>7.05E+03    |             |
| 1,1,2-Trichloroethane                                          |                          | 79-00-5                    | 3,210                           |                   | Exit          | Velocity Too                 | High     | 660                                                   | 5                                                     | 0.99                               |            | 2.07E+03                |             |
| Trichloroethylene (TCE)                                        |                          | 79-01-6                    | 1,036<br>1,933                  |                   |               | Velocity Too<br>Velocity Too |          | 2,702<br>1,601                                        | 5<br>5                                                | 1.00                               |            | 8.51E+03<br>5.04E+03    |             |
| 2,4,6-Trichlorophenol<br>Vinyl Bromide                         |                          | 88-06-2<br>593-60-2        | 893                             |                   |               | Velocity Too                 |          | 2,789                                                 | 5                                                     | 1.00                               |            | 5.04E+03<br>8.78E+03    |             |
| Vinyl Chloride                                                 |                          | 75-01-4                    | 3,557                           |                   |               | Velocity Too                 |          | 2,194                                                 | 5                                                     | 1.00                               |            | 6.90E+03                |             |
| Non-Cancer R                                                   | isk HAP/VOC              | CAS#                       | VE Emission Concer<br>(μg/m³)   | ntration          | VE En         | ission Rate(                 | µg/sec)  | AS Influent<br>Groundwater<br>Concentration<br>(µg/L) | AS Effluent<br>Groundwater<br>Concentration<br>(µg/L) | Removal Factor<br>(dimension-less) | AS         | Emission Ra<br>(μg/sec) | ite         |
| 1,1,1-Trichloroethane (Methy                                   | d chloroform)            | 71-55-6                    | 686                             |                   |               | Velocity Too                 |          | 2,972                                                 | 5                                                     | 1.00                               |            | 9.36E+03                |             |
| 1,1-Dichloroethene (DCE)<br>4-Methyl-2-pentanone (Meth         | ul isobutul ketono MIDIO | 75-35-4<br>108-10-1        | 1,754<br>2,063                  |                   |               | Velocity Too<br>Velocity Too |          | 1,960<br>1,090                                        | 5                                                     | 1.00                               |            | 6.17E+03<br>3.42E+03    |             |
| 4-Metnyl-2-pentanone (Metnyl brom                              |                          | 74-83-9                    | 1,508                           |                   |               | Velocity Too                 |          | 706                                                   | 5                                                     | 0.99                               |            | 2.21E+03                |             |
| Carbon disulfide                                               | •                        | 75-15-0                    | 2,397                           |                   | Exit          | Velocity Too                 | High     | 961                                                   | 5                                                     | 0.99                               |            | 3.01E+03                |             |
| Chlorobenzene                                                  |                          | 108-90-7                   | 3,553<br>1,898                  |                   |               | Velocity Too                 |          | 715                                                   | 5                                                     | 0.99                               |            | 2.24E+03                |             |
| Chloroethane (Ethyl chloride<br>Chloromethane (Methyl chloride |                          | 75-00-3<br>74-87-3         | 1,898<br>3,364                  |                   |               | Velocity Too<br>Velocity Too |          | 1,313<br>2,948                                        | 5                                                     | 1.00                               |            | 4.13E+03<br>9.28E+03    |             |
| Hexane                                                         | ,                        | 110-54-3                   | 1,313                           |                   | Exit          | Velocity Too                 | High     | 2,684                                                 | 5                                                     | 1.00                               |            | 8.45E+03                |             |
| Styrene                                                        |                          | 100-42-5                   | 1,258                           |                   | Exit          | Velocity Too                 | High     | 687                                                   | 5                                                     | 0.99                               |            | 2.15E+03                |             |
| Toluene (Methylbenzene)<br>Vinyl acetate                       |                          | 108-88-3<br>108-05-4       | 485<br>3,083                    |                   |               | Velocity Too<br>Velocity Too |          | 1,483<br>1,396                                        | 5<br>5                                                | 1.00                               |            | 4.66E+03<br>4.39E+03    |             |
| Vinyl acetate<br>Xylenes <sup>c</sup>                          |                          | 1330-20-7                  | 1,185                           |                   |               | Velocity Too                 |          | 2,023                                                 | 5                                                     | 1.00                               |            | 4.39E+03<br>6.37E+03    |             |
| Total Extractable Hydrocarbo                                   | ons (TEH) as gasoline    | -                          | .,                              |                   |               | , . 50                       |          | 1,250                                                 | 5                                                     | 1.00                               |            | 3.93E+03                |             |
| Total Extractable Hydrocarbo                                   | ons (TEH) as diesel      | -                          |                                 |                   |               |                              |          | 1,545                                                 | 5                                                     | 1.00                               |            | 4.86E+03                |             |
| Total Extractable Hydrocarbo<br>Total Petroleum Hydrocarbo     |                          |                            | 2,030                           |                   | E (-24        | Velocity Too                 | High     | 533                                                   | 5                                                     | 0.99                               |            | 1.67E+03                |             |
| Sum of TEH (sum of gas,                                        |                          | J                          | 2,030                           |                   | EXIL          | velocity 100                 | ragn     |                                                       |                                                       |                                    |            | 1.05E+04                |             |
| Sum of HAP (excluding TEH                                      |                          |                            |                                 |                   |               |                              |          |                                                       |                                                       |                                    |            | 5.24E+05                |             |
|                                                                |                          |                            |                                 |                   |               |                              |          |                                                       |                                                       |                                    |            |                         |             |

<sup>&</sup>lt;sup>a</sup>CFM=Cubic Feet per Minute - provide stack exit flowrate for actual exit conditions on the effluent side of the blower (i.e., at the actual temperature and pressure of the air being discharged). The actual pressure is assumed to be ambient in a discharge stack; therefore, the effect of pressure in the actm to scfm conversion is considered negligible.

<sup>b</sup>Non-detect laboratory analytical results should be entered as zero concentrations.

<sup>c</sup>Enter total Xylenes - if laboratory results are speciated, they should be summed.

Note: Some rows of chemicals were removed from the example for clarity.

Combined Excess Lifetime Cancer Risk:

1.15E-01

#### RISK EVALUATION WORKSHEET EXAMPLE

# NEBRASKA Good Life. Great Environment.

## Petroleum Remediation Section Air Emissions Calculation Workbook Vapor Extraction (VE) and/or Air Stripper (AS) - Risk Evaluation Worksheet

ood Life. Great Environment.

Dept. of Environment & Energy v. 4/7/2020 Test **Facility Name** Somewhere, NE Location Program ID 000111 010101-XX-0800 NDEQ ID Consultant Project No. 01121213 **Consultant Company** ABC Environmental John Prepared By Reviewed By Sue Excess Lifetime Excess Lifetime Chemical Name CAS # Chemical Name CAS# Cancer Risk Cancer Risk 107-06-2 75-07-0 7 75F-07 1.2-Dichloroethane (DCA) 8 09F-06 Acetaldehyde 2-Acetylaminofluorene 53-96-3 2.84E-04 1,2-Dichloropropane 78-87-5 7.52E-07 79-06-1 4.85E-05 1,3-dichloropropene 542-75-6 1.07E-06 Acrylamide Acrylonitrile 107-13-1 3.24E-05 Dimethyl Aminoazobenzene 60-11-7 7.33E-04 Allyl Chloride 107-05-1 2.69E-06 7,12-Dimethylbenz(a)anthracene 57-97-6 2.87E-02 4-Aminobiphenyl 92-67-1 1.72E-03 2,4-Dinitrotoluene 121-14-2 1.01E-05 7.89E-07 2.20E-06 Aniline 62-53-3 1,4-dioxane 123-91-1 Benz(a)anthracene 56-55-3 3.52E-05 1,2-Dipheynalhydrazine 122-66-7 1.14E-04 71-43-2 7.08E-07 106-89-8 4.29E-07 Benzene Epichlorohydrin Benzidine 92-87-5 1.74E-02 Ethylbenzene 100-41-4 7.40E-07 Benzo(j)fluoranthene 205-82-3 5.28E-05 Ethylene Oxide 75-21-8 1.01E-03 Benzo(a)pyrene 50-32-8 2.31E-04 Ethyleneimine 151-56-4 5.96E-03 Benzo(b)fluoranthene 205-99-2 1.34E-05 Formaldehyde 50-00-0 3.66E-06 Benzo(k)fluoranthene 207-08-9 2.49E-06 Heptachlor 76-44-8 1.18E-04 100-44-7 1.04E-05 Hexachloro-1,3-butadiene 87-68-3 1.31E-05 Benzyl chloride Bis(chloromethyl)ether Indeno(1,2,3-cd)pyrene 542-88-1 3.17E-02 193-39-5 1.64E-05 Bis(2-ethylhexyl)phthalate (DEHP) 117-81-7 1.44E-06 Methyl Hydrazine 60-34-4 3.29E-04 Bromodichloromethane 75-27-4 6.82E-06 Methylene chloride (Dichloromethane) 75-09-2 3.20E-09 Bromoform 75-25-2 6.57E-07 Methyl-tert-butyl ether (MTBE) 1634-04-4 1.05E-07 1,3-Butadiene 106-99-0 1.06E-05 Naphthalene 91-20-3 4.96E-06 Carbon tetrachloride 56-23-5 3.65E-06 Nitrobenzene 98-95-3 1.67E-05 Chlorobenzilate 510-15-6 2.13E-06 4-Nitropyrene 57835-92-4 3.01E-05 2-Chloro-1,3-butadiene (Chloroprene) 126-99-8 3.45E-05 N-Nitrosodimethylamine 62-75-9 6.86E-03 Chloroform 67-66-3 1.15E-05 N-Nitroso-N-methylurea 684-93-5 1.61E-02 Chloromethyl Methyl Ether 107-30-2 5.87E-05 59-89-2 9.81E-04 N-Nitrosomorpholine Pentachlorophenol Chrysene 218-01-9 1.62E-07 87-86-5 8.94E-07 Dibenz(a,h)anthracene 53-70-3 3 48F-04 Polychlorinated Biphenyls 1336-36-3 6.71E-05 Dibenzo(a,e)pyrene 192-65-4 3.08E-04 Propylene Oxide 75-56-9 4.82E-07 1,2-Dibromo-3-choloropropate 96-12-8 8.87E-04 1,1,2,2-Tetrachloroethane 79-34-5 2.05E-05 2.49E-04 127-18-4 9.31E-08 1,2-Dibromoethane (Ethylene dibromide, EDB) 106-93-4 Tetrachloroethylene (PCE) 1,4-Dichlorobenzene 106-46-7 3.15E-06 1,1,2-Trichloroethane 79-00-5 1.68E-06 8.12E-05 Trichloroethylene (TCE) 1.77E-06 3,3'-Dichlorobenzidine 91-94-1 79-01-6 1,1-Dichloro-2,2-bis(p-chlorophenol)ethylene) (DDE) 72-55-9 1.69E-05 2.4.6-Trichlorophenol 88-06-2 7.93E-07 Vinyl Bromide 1.1-Dichloroethane 75-34-3 6.08E-07 593-60-2 1.43E-05 Vinyl Chloride 75-01-4 1.54E-06

### EMISSION TOTALS WORKSHEET EXAMPLE

| Good Life.                                                                                                                                 | RAS<br>Great Envi                                                         | ronment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | sions C<br>) - Emiss                                                                                                                      |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             | (                                                                                                                                                                                                                                         |                                                                                                                            | v. 4/7/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Facility Name                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  | est                                                                                                                                        |                                                                                                                                      | 1. Complete                                                                                                                            | the <i>Emissio</i>                       | n Rate work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sheet. If desi            | red, type an a                                                                                                                            | dditional CO                                                                                                                                            | C name in co                                                                                                                                                                                               | ell J21.                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Location                                                                                                                                   |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  | here, NE<br>0111                                                                                                                           |                                                                                                                                      | 2. Tra                                                                                                                                 | nsfer resu                               | lts from ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne Risk Ev                | aluation a                                                                                                                                | nd Emissi                                                                                                                                               | ion Rate v                                                                                                                                                                                                 | vorksheet                                                                                                                                                                   | s Ch                                                                                                                                                                                                                                      | anges to                                                                                                                   | Totals?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Program ID<br>NDEQ ID                                                                                                                      |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  | -XX-0800                                                                                                                                   |                                                                                                                                      | 3. If you ider                                                                                                                         | ntified an add                           | itional COC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | type rate or o            | copy and "pas                                                                                                                             | te value" from                                                                                                                                          | m the <i>Emiss</i>                                                                                                                                                                                         | ion Rate wo                                                                                                                                                                 | rksheet.                                                                                                                                                                                                                                  |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Consultant Pro                                                                                                                             | oject No.                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  | 21213                                                                                                                                      |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | peration" since                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           | o)                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Consultant Co                                                                                                                              | mpany                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  | rironmental                                                                                                                                |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ite" and "end             | date" in row                                                                                                                              | 6 to calculat                                                                                                                                           | e mass remo                                                                                                                                                                                                | ved and ave                                                                                                                                                                 | rage cancer r                                                                                                                                                                                                                             | risk                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Prepared By                                                                                                                                |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  | ohn                                                                                                                                        |                                                                                                                                      |                                                                                                                                        | desired peri                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           | Move Old                                                                                                                   | lest Data Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cords to   |
| Reviewed By<br>VE&AS Potentia                                                                                                              | al to Emit - To                                                           | ntal HADe (tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ne(vear)                                                                                                                                  |                                                                                                                                  | Sue                                                                                                                                        |                                                                                                                                      | b. If the data                                                                                                                         | rows on this                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | II, the oldest I          | records can b                                                                                                                             |                                                                                                                                                         |                                                                                                                                                                                                            | AS emission                                                                                                                                                                 |                                                                                                                                                                                                                                           |                                                                                                                            | ssion Archive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| VE Potential to                                                                                                                            | Emit- TPH (to                                                             | ons/year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | maryoury                                                                                                                                  |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        | -5.46                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | Calculated u                                                                                                                              |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             | 14100                                                                                                                                                                                                                                     |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| AS Potential to                                                                                                                            |                                                                           | tons/year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        | -1.40                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | Calculated u                                                                                                                              |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Averaging Per                                                                                                                              | riod                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           | t Date                                                                                                                           | 1/1/                                                                                                                                       | 2002                                                                                                                                 | End                                                                                                                                    |                                          | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /2002                     |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            | ive sheet if a                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Mass Removed<br>Mass Removed                                                                                                               |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        | 1.84<br>-8.95                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            | 2-month rollin<br>2-month rollin                                                                                                                                            |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Average Cance                                                                                                                              |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           | 1 (103)                                                                                                                          |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        | 1.18                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | Ose a one ye                                                                                                                              | sai periou iii                                                                                                                                          | 10W 10 101 12                                                                                                                                                                                              | L-IIIOIIIII IOIIIII                                                                                                                                                         | ig emissions                                                                                                                                                                                                                              |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| worago oanoc                                                                                                                               | - raok daning                                                             | , wordging i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Onou                                                                                                                                      |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      | l                                                                                                                                      | 1.10                                     | _ 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Sample Date                                                                                                                                | Combined Excess<br>Lifetime Cancer Risk                                   | 90 Seuseus Beuzeus Beu | Ethylbenzene                                                                                                                              | e was H<br>H<br>110-54-3                                                                                                         | Toluene<br>98 (Methylbenzene)                                                                                                              | 89<br>90<br>90<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                         | Total Petroleum<br>: Hydrocarbons<br>(TPH)                                                                                             | Sum of HAP<br>(excluding TEH<br>and TPH) | Enter an extra<br>chemical of<br>concern here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ецех<br>2<br>3<br>71-43-2 | Ethylbenzene                                                                                                                              | Hexane<br>Hexane<br>110-54-3                                                                                                                            | Toluene<br>(Methylbenzene)                                                                                                                                                                                 | 89<br>1330-20-7                                                                                                                                                             | Sum of TEH<br>(sum of gas,<br>diesel, oif)                                                                                                                                                                                                | Sum of HAP<br>(excluding TEH<br>and TPH)                                                                                   | (Not Used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Sar                                                                                                                                        | S ==                                                                      | Use the bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tton above to                                                                                                                             | transfer car                                                                                                                     | ncer risk and                                                                                                                              | emission rate                                                                                                                        | es for standa                                                                                                                          | rd RBCA CO                               | Cs. Rates for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | additional c              | hemicals mu                                                                                                                               | st be copied                                                                                                                                            | manually fro                                                                                                                                                                                               | m the Emiss                                                                                                                                                                 | sion Rate wo                                                                                                                                                                                                                              | rksheet.                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 1/1/2002                                                                                                                                   | 1.18E-01                                                                  | 1.58E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -7.51E+02                                                                                                                                 | -9.07E+02                                                                                                                        | -2.77E+03                                                                                                                                  | -7.39E+03                                                                                                                            | -1.06E+03                                                                                                                              | -3.87E+04                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -8.21E+03                 | 1.28E+04                                                                                                                                  | -1.15E+04                                                                                                                                               | 9.66E+03                                                                                                                                                                                                   | -3.63E+03                                                                                                                                                                   | 4.51E+02                                                                                                                                                                                                                                  | 3.24E+05                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 2/1/2002                                                                                                                                   | 1.18E-01<br>1.18E-01                                                      | 1.50E+02<br>1.42E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -8.51E+02<br>-9.51E+02                                                                                                                    | -1.01E+03<br>-1.11E+03                                                                                                           |                                                                                                                                            | -8.13E+03<br>-8.88E+03                                                                                                               | -1.18E+03<br>-1.30E+03                                                                                                                 | -4.37E+04<br>-4.87E+04                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 1.35E+04<br>1.42E+04                                                                                                                      |                                                                                                                                                         |                                                                                                                                                                                                            | -4.63E+03<br>-5.63E+03                                                                                                                                                      | -5.49E+02<br>-1.55E+03                                                                                                                                                                                                                    | 3.04E+05<br>2.84E+05                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 3/1/2002<br>4/1/2002                                                                                                                       | 1.18E-01<br>1.18E-01                                                      | 1.42E+02<br>1.34E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                           | -1.11E+03<br>-1.21E+03                                                                                                           |                                                                                                                                            | -8.88E+03<br>-9.63E+03                                                                                                               | -1.30E+03                                                                                                                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 1.42E+04<br>1.49E+04                                                                                                                      | -1.55E+04<br>-1.75E+04                                                                                                                                  |                                                                                                                                                                                                            | -5.63E+03                                                                                                                                                                   | -1.55E+03<br>-2.55E+03                                                                                                                                                                                                                    | 2.84E+05<br>2.64E+05                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 5/1/2002                                                                                                                                   | 1.18E-01                                                                  | 1.26E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.15E+03                                                                                                                                 | -1.31E+03                                                                                                                        | -3.89E+03                                                                                                                                  | -1.04E+04                                                                                                                            | -1.54E+03                                                                                                                              | -5.87E+04                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.22E+04                 | 1.56E+04                                                                                                                                  | -1.95E+04                                                                                                                                               | 1.17E+04                                                                                                                                                                                                   | -7.63E+03                                                                                                                                                                   | -3.55E+03                                                                                                                                                                                                                                 | 2.44E+05                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 6/1/2002                                                                                                                                   | 1.18E-01                                                                  | 1.18E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | -1.41E+03                                                                                                                        |                                                                                                                                            | -1.11E+04                                                                                                                            | -1.66E+03                                                                                                                              |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 1.63E+04                                                                                                                                  |                                                                                                                                                         | 1.22E+04                                                                                                                                                                                                   | -8.63E+03                                                                                                                                                                   | -4.55E+03                                                                                                                                                                                                                                 | 2.24E+05<br>2.04E+05                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 7/1/2002<br>8/1/2002                                                                                                                       | 1.18E-01<br>1.18E-01                                                      | 1.10E+02<br>1.02E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                           | -1.51E+03<br>-1.61E+03                                                                                                           | -4.45E+03<br>-4.73E+03                                                                                                                     | -1.19E+04<br>-1.26E+04                                                                                                               | -1.78E+03<br>-1.90E+03                                                                                                                 | -6.87E+04<br>-7.37E+04                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 1.70E+04<br>1.77E+04                                                                                                                      | -2.35E+04<br>-2.55E+04                                                                                                                                  | 1.27E+04<br>1.32E+04                                                                                                                                                                                       | -9.63E+03                                                                                                                                                                   | -5.55E+03<br>-6.55E+03                                                                                                                                                                                                                    | 1.84E+05                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 9/1/2002                                                                                                                                   | 1.18E-01                                                                  | 9.39E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.55E+03                                                                                                                                 | -1.71E+03                                                                                                                        | -5.01E+03                                                                                                                                  |                                                                                                                                      | -2.02E+03                                                                                                                              | -7.87E+04                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 1.84E+04                                                                                                                                  | -2.75E+04                                                                                                                                               | 1.37E+04                                                                                                                                                                                                   | -1.16E+04                                                                                                                                                                   | -7.55E+03                                                                                                                                                                                                                                 | 1.64E+05                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 10/1/2002                                                                                                                                  | 1.18E-01<br>1.18E-01                                                      | 8.59E+01<br>7.79E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.65E+03                                                                                                                                 | -1.81E+03<br>-1.91E+03                                                                                                           | -5.29E+03<br>-5.57E+03                                                                                                                     | -1.41E+04<br>-1.49E+04                                                                                                               | -2.14E+03<br>-2.26E+03                                                                                                                 | -8.37E+04                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 1.91E+04<br>1.98E+04                                                                                                                      | -2.95E+04                                                                                                                                               | 1.42E+04                                                                                                                                                                                                   | -1.26E+04<br>-1.36E+04                                                                                                                                                      | -8.55E+03<br>-9.55E+03                                                                                                                                                                                                                    | 1.44E+05<br>1.24E+05                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 12/1/2002                                                                                                                                  | 1.18E-01                                                                  | 6.99E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | -1.91E+03<br>-2.01E+03                                                                                                           | -5.85E+03                                                                                                                                  | -1.49E+04                                                                                                                            |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 2.05E+04                                                                                                                                  |                                                                                                                                                         | 1.47E+04<br>1.52E+04                                                                                                                                                                                       | -1.36E+04                                                                                                                                                                   | -9.55E+03<br>-1.05E+04                                                                                                                                                                                                                    | 1.24E+05<br>1.04E+05                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| 1/1/2003                                                                                                                                   | 1.18E-01                                                                  | 2.00E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | 9.11E+01                                                                                                                         | 3.00E+01                                                                                                                                   | 8.39E+01                                                                                                                             | 1.92E+02                                                                                                                               | 1.46E+04                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.09E+03                  | 5.16E+03                                                                                                                                  | 5.59E+03                                                                                                                                                | 5.98E+03                                                                                                                                                                                                   | 4.50E+03                                                                                                                                                                    | 8.29E+03                                                                                                                                                                                                                                  | 5.17E+05                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                            |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                           |                                                                                                                                  |                                                                                                                                            |                                                                                                                                      |                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                                                                                                                           |                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| ample Date                                                                                                                                 | E Hours of Operation since<br>st sampling event                           | S Hours of Operation since<br>st sampling event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92<br>98<br>98<br>71-43-2                                                                                                                 | 8482 Legy May 100-41-4                                                                                                           |                                                                                                                                            |                                                                                                                                      | 88<br>85<br>X<br>1330-20-7                                                                                                             | , TPH + TEH                              | Sum of HAP (excluding<br>1 TEH and TPH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (bed Used)                | 94 92 LVB GI<br>71-43-2                                                                                                                   |                                                                                                                                                         | eue<br>XOP<br>110-54-3                                                                                                                                                                                     | Toluene<br>(Methylbenzene)                                                                                                                                                  |                                                                                                                                                                                                                                           | і ТРН+ ТЕН                                                                                                                 | Sum of HAP (excluding<br>TEH and TPH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Not Used) |
| Sample                                                                                                                                     | VE<br>last                                                                | AS Hours of Operation<br>last sampling event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 71-43-2                                                                                                                                   | 100-41-4                                                                                                                         | 110-54-3                                                                                                                                   | 108-88-3<br>Daily Remova                                                                                                             | 1330-20-7<br>Rate (lbs/da                                                                                                              | +<br>H<br>d.<br><br>sy)                  | Sum of HAP<br>TEH and TPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | 71-43-2                                                                                                                                   | 100-41-4<br>Mass Re                                                                                                                                     | 110-54-3<br>moved during                                                                                                                                                                                   | 108-88-3<br>g Period - ba                                                                                                                                                   | 1330-20-7<br>sed on hours                                                                                                                                                                                                                 | of operation                                                                                                               | Sum of HAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 1/1/2002<br>2/1/2002<br>3/1/2002<br>4/1/2002<br>5/1/2002                                                                                   | 124<br>126<br>128<br>130                                                  | Value of Oberation AS Hours of Oberation AS Hours of Oberation 124 126 130 132 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71-43-2<br>-1.53E+00<br>-1.73E+00<br>-1.92E+00<br>-2.11E+00<br>-2.30E+00                                                                  | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00                                                                         | -2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-3.97E+00                                                                              | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.36E+00<br>1.40E+00<br>1.44E+00<br>1.48E+00                                                 | 1330-20-7<br>Rate (lbs/da<br>-2.10E+00<br>-2.43E+00<br>-2.76E+00<br>-3.10E+00<br>-3.43E+00                                             | +<br>                                    | 5.43E+01<br>4.96E+01<br>4.00E+01<br>3.53E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 71-43-2<br>-7.93E+00<br>-9.06E+00<br>-1.02E+01<br>-1.14E+01<br>-1.27E+01                                                                  | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01                                                                         | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.69E+01<br>-1.94E+01<br>-2.18E+01                                                                                                                  | 108-88-3<br>g Period - bas<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>7.80E+00<br>8.15E+00                                                                                      | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01                                                                                                                                                | of operation<br>-5.96E-01<br>-1.73E+00<br>-2.89E+00<br>-4.09E+00<br>-5.33E+00                                              | (pounds) 2.81E+02 2.60E+02 2.17E+02 1.94E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| 9<br>6<br>8<br>7<br>1/1/2002<br>2/1/2002<br>3/1/2002<br>4/1/2002<br>5/1/2002<br>6/1/2002                                                   | 124<br>126<br>128<br>130<br>132<br>134                                    | 92 Horizon of Oberation AS Hours of Oberation 124 126 130 132 134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71-43-2<br>-1.53E+00<br>-1.73E+00<br>-1.92E+00<br>-2.11E+00<br>-2.30E+00<br>-2.49E+00                                                     | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00                                                             | -2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-3.97E+00<br>-4.37E+00                                                                 | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.36E+00<br>1.40E+00<br>1.44E+00<br>1.48E+00<br>1.52E+00                                     | 1330-20-7<br>Rate (lbs/da<br>-2.10E+00<br>-2.43E+00<br>-2.76E+00<br>-3.10E+00<br>-3.43E+00<br>-3.76E+00                                | +<br>H<br>H<br>                          | 5.43E+01<br>4.96E+01<br>4.00E+01<br>3.53E+01<br>3.05E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | 71-43-2  -7.93E+00 -9.06E+00 -1.02E+01 -1.14E+01 -1.27E+01 -1.39E+01                                                                      | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.60E+01                                                             | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.69E+01<br>-1.94E+01<br>-2.18E+01<br>-2.44E+01                                                                                                     | 108-88-3<br>g Period - bas<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>7.80E+00<br>8.15E+00<br>8.51E+00                                                                          | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01<br>-2.10E+01                                                                                                                                   | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00                                                   | QE TE 19 PE  |            |
| 1/1/2002<br>2/1/2002<br>3/1/2002<br>4/1/2002<br>5/1/2002<br>6/1/2002<br>8/1/2002                                                           | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138                      | 124<br>126<br>130<br>132<br>134<br>136<br>138<br>138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71-43-2<br>-1.53E+00<br>-1.73E+00<br>-1.92E+00<br>-2.11E+00<br>-2.30E+00<br>-2.49E+00<br>-2.69E+00<br>-2.88E+00                           | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>2.99E+00<br>3.10E+00                                     | 110-54-3<br>[ -2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-3.97E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00                         | 108-88-3 Daily Remova 1.31E+00 1.36E+00 1.40E+00 1.44E+00 1.52E+00 1.57E+00 1.61E+00                                                 | 1330-20-7<br>Rate (lbs/da<br>-2.10E+00<br>-2.43E+00<br>-2.76E+00<br>-3.10E+00<br>-3.43E+00<br>-4.10E+00<br>-4.43E+00                   | +<br>+<br><br><br><br><br>               | 5.43E+01<br>4.96E+01<br>4.00E+01<br>3.05E+01<br>2.58E+01<br>2.10E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 71-43-2<br>-7.93E+00<br>-9.06E+00<br>-1.02E+01<br>-1.14E+01<br>-1.27E+01<br>-1.32E+01<br>-1.65E+01                                        | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.60E+01<br>1.69E+01<br>1.78E+01                                     | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.69E+01<br>-2.18E+01<br>-2.44E+01<br>-2.70E+01<br>-2.97E+01                                                                                        | 108-88-3<br>g Period - bas<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>7.80E+00<br>8.15E+00<br>8.51E+00<br>8.87E+00<br>9.24E+00                                                  | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01<br>-2.10E+01<br>-2.32E+01<br>-2.55E+01                                                                                                         | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00 -7.91E+00 -9.25E+00                               | (pounds)  2.81E+02 2.60E+02 2.39E+02 2.17E+02 1.94E+02 1.46E+02 1.21E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 9<br>6<br>7<br>1/1/2002<br>2/1/2002<br>3/1/2002<br>4/1/2002<br>5/1/2002<br>6/1/2002<br>7/1/2002<br>9/1/2002                                | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138                      | 124 Horizon of Operation 124 Horizon 126 128 139 139 139 138 138 1440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71-43-2<br>-1.53E+00<br>-1.92E+00<br>-2.11E+00<br>-2.30E+00<br>-2.49E+00<br>-2.69E+00<br>-3.07E+00                                        | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>2.99E+00<br>3.10E+00<br>3.21E+00                         | 110-54-3<br>E<br>-2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-3.97E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00<br>-5.57E+00         | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.36E+00<br>1.40E+00<br>1.44E+00<br>1.52E+00<br>1.57E+00<br>1.61E+00<br>1.65E+00             | 1330-20-7<br>I Rate (lbs/da<br>-2.10E+00<br>-2.43E+00<br>-2.76E+00<br>-3.10E+00<br>-3.43E+00<br>-4.10E+00<br>-4.45E+00<br>-4.76E+00    | +<br>H<br>H<br>                          | 5.43E+01<br>4.96E+01<br>4.00E+01<br>3.53E+01<br>3.05E+01<br>2.58E+01<br>1.62E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 71-43-2<br>-7.93E+00<br>-9.06E+00<br>-1.02E+01<br>-1.14E+01<br>-1.27E+01<br>-1.39E+01<br>-1.52E+01<br>-1.65E+01<br>-1.79E+01              | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.60E+01<br>1.78E+01<br>1.87E+01                                     | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.69E+01<br>-1.94E+01<br>-2.18E+01<br>-2.70E+01<br>-2.97E+01<br>-3.25E+01                                                                           | 108-88-3<br>g Period - bas<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>8.15E+00<br>8.51E+00<br>8.87E+00<br>9.24E+00<br>9.62E+00                                                  | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01<br>-2.10E+01<br>-2.32E+01<br>-2.78E+01                                                                                                         | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00 -7.91E+00 -9.25E+00 -1.06E+01                     | (pounds)  2.81E+02 2.60E+02 2.39E+02 1.70E+02 1.70E+02 1.21E+02 9.47E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                    | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138<br>140               | 124<br>126<br>138<br>138<br>140<br>140<br>142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71-43-2<br>-1.53E+00<br>-1.73E+00<br>-1.92E+00<br>-2.11E+00<br>-2.49E+00<br>-2.69E+00<br>-3.07E+00<br>-3.26E+00                           | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>3.10E+00<br>3.21E+00<br>3.33E+00                         | 110-54-3<br>110-54-3<br>-2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00<br>-5.57E+00<br>-5.97E+00  | 108-88-3 Daily Remova 1.31E+00 1.36E+00 1.40E+00 1.44E+00 1.52E+00 1.57E+00 1.65E+00 1.69E+00                                        | 1330-20-7<br>I Rate (lbs/da<br>-2.10E+00<br>-2.43E+00<br>-3.10E+00<br>-3.43E+00<br>-3.76E+00<br>-4.10E+00<br>-4.76E+00<br>-5.09E+00    | +<br>H<br>H<br>                          | 5.43E+01<br>4.96E+01<br>4.00E+01<br>3.05E+01<br>2.58E+01<br>1.62E+01<br>1.15E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 71-43-2<br>-7.93E+00<br>-9.06E+00<br>-1.02E+01<br>-1.14E+01<br>-1.39E+01<br>-1.52E+01<br>-1.59E+01<br>-1.99E+01<br>-1.99E+01              | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.60E+01<br>1.78E+01<br>1.87E+01<br>1.97E+01                         | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.69E+01<br>-1.94E+01<br>-2.18E+01<br>-2.44E+01<br>-2.70E+01<br>-2.97E+01<br>-3.25E+01<br>-3.53E+01                                                 | 108-88-3<br>g Period - ba:<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>8.15E+00<br>8.51E+00<br>8.87E+00<br>9.62E+00<br>1.00E+01                                                  | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.28E+01<br>-1.68E+01<br>-1.89E+01<br>-2.32E+01<br>-2.32E+01<br>-2.78E+01<br>-3.01E+01                                                                                            | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00 -7.91E+00 -9.25E+00 -1.06E+01 -1.20E+01           | Characteristics of the control of th |            |
| 9<br>6<br>6<br>7<br>1/1/2002<br>2/1/2002<br>3/1/2002<br>4/1/2002<br>5/1/2002<br>6/1/2002<br>8/1/2002<br>9/1/2002<br>10/1/2002<br>11/1/2002 | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138<br>140<br>142<br>144 | 124<br>128<br>130<br>130<br>132<br>134<br>140<br>144<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71-43-2 -1.53E+00 -1.73E+00 -1.92E+00 -2.30E+00 -2.49E+00 -2.69E+00 -3.07E+00 -3.26E+00 -3.65E+00                                         | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>3.10E+00<br>3.21E+00<br>3.34E+00<br>3.56E+00             | 110-54-3<br>-2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00<br>-5.97E+00<br>-6.37E+00<br>-6.37E+00 | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.40E+00<br>1.40E+00<br>1.48E+00<br>1.52E+00<br>1.65E+00<br>1.65E+00<br>1.73E+00<br>1.73E+00 | 1330-20-7 I Rate (lbs/de -2.10E+00 -2.43E+00 -2.76E+00 -3.10E+00 -3.43E+00 -4.10E+00 -4.43E+00 -4.76E+00 -5.94E+00 -5.43E+00 -5.76E+00 | + T A A A A A A A A A A A A A A A A A A  | A L DE HOLL TO LEST TO  |                           | 71-43-2<br>-7.93E+00<br>-9.06E+00<br>-1.02E+01<br>-1.14E+01<br>-1.27E+01<br>-1.39E+01<br>-1.52E+01<br>-1.65E+01<br>-1.79E+01              | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.69E+01<br>1.78E+01<br>1.87E+01<br>1.97E+01<br>2.07E+01<br>2.16E+01 | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.94E+01<br>-2.18E+01<br>-2.70E+01<br>-2.97E+01<br>-3.25E+01<br>-3.82E+01<br>-4.12E+01                                                              | 108-88-3<br>g Period - ba:<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>8.15E+00<br>8.51E+00<br>9.24E+00<br>9.62E+00<br>1.00E+01<br>1.04E+01                                      | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01<br>-2.10E+01<br>-2.32E+01<br>-2.78E+01<br>-3.01E+01<br>-3.26E+01<br>-3.50E+01                                                                  | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00 -7.91E+00 -9.25E+00 -1.06E+01 -1.35E+01 -1.50E+01 | 0. E   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 9 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                    | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138<br>140<br>142        | Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line and Co Jo Sinoth H S & B Line a | 71-43-2<br>-1.53E+00<br>-1.73E+00<br>-1.92E+00<br>-2.11E+00<br>-2.39E+00<br>-2.49E+00<br>-2.88E+00<br>-3.07E+00<br>-3.26E+00<br>-3.45E+00 | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>3.10E+00<br>3.21E+00<br>3.34E+00<br>3.56E+00 | 110-54-3<br>-2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00<br>-5.97E+00<br>-6.37E+00<br>-6.37E+00 | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.40E+00<br>1.40E+00<br>1.48E+00<br>1.52E+00<br>1.65E+00<br>1.65E+00<br>1.73E+00<br>1.73E+00 | 1330-20-7 I Rate (lbs/de -2.10E+00 -2.43E+00 -2.76E+00 -3.10E+00 -3.43E+00 -4.10E+00 -4.43E+00 -4.76E+00 -5.94E+00 -5.43E+00 -5.76E+00 | + T A A A A A A A A A A A A A A A A A A  | A L DE HOLL TO LEST TO  |                           | 71-43-2<br>-7.93E+00<br>-9.06E+00<br>-1.02E+01<br>-1.14E+01<br>-1.27E+01<br>-1.39E+01<br>-1.65E+01<br>-1.79E+01<br>-1.93E+01<br>-2.07E+01 | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.60E+01<br>1.78E+01<br>1.87E+01<br>1.97E+01<br>2.07E+01             | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.94E+01<br>-2.18E+01<br>-2.70E+01<br>-2.97E+01<br>-3.25E+01<br>-3.82E+01<br>-4.12E+01                                                              | 108-88-3<br>g Period - ba:<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>8.15E+00<br>8.51E+00<br>9.24E+00<br>9.62E+00<br>1.00E+01<br>1.04E+01                                      | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01<br>-2.10E+01<br>-2.232E+01<br>-2.78E+01<br>-3.01E+01<br>-3.26E+01<br>-3.50E+01                                                                 | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00 -7.91E+00 -9.25E+00 -1.06E+01 -1.20E+01 -1.35E+01 | 0. E   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 9 2 2 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                              | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138<br>140<br>142<br>144 | 124<br>128<br>130<br>130<br>132<br>134<br>140<br>144<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71-43-2 -1.53E+00 -1.73E+00 -1.92E+00 -2.30E+00 -2.49E+00 -2.69E+00 -3.07E+00 -3.26E+00 -3.65E+00                                         | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>3.10E+00<br>3.21E+00<br>3.34E+00<br>3.56E+00             | 110-54-3<br>-2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00<br>-5.97E+00<br>-6.37E+00<br>-6.37E+00 | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.40E+00<br>1.40E+00<br>1.48E+00<br>1.52E+00<br>1.65E+00<br>1.65E+00<br>1.73E+00<br>1.73E+00 | 1330-20-7 I Rate (lbs/de -2.10E+00 -2.43E+00 -2.76E+00 -3.10E+00 -3.43E+00 -4.10E+00 -4.43E+00 -4.76E+00 -5.94E+00 -5.43E+00 -5.76E+00 | + T A A A A A A A A A A A A A A A A A A  | A L DE HOLL TO LEST TO  |                           | 71-43-2  -7.93E+00 -9.06E+00 -1.02E+01 -1.14E+01 -1.27E+01 -1.39E+01 -1.52E+01 -1.99E+01 -1.99E+01 -1.92E+01 -2.07E+01 -2.22E+01          | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.69E+01<br>1.78E+01<br>1.87E+01<br>1.97E+01<br>2.07E+01<br>2.16E+01 | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.94E+01<br>-2.18E+01<br>-2.70E+01<br>-2.97E+01<br>-3.25E+01<br>-3.82E+01<br>-4.12E+01                                                              | 108-88-3<br>g Period - ba:<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>8.15E+00<br>8.51E+00<br>9.24E+00<br>9.62E+00<br>1.00E+01<br>1.04E+01                                      | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01<br>-2.10E+01<br>-2.32E+01<br>-2.78E+01<br>-3.01E+01<br>-3.26E+01<br>-3.50E+01                                                                  | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00 -7.91E+00 -9.25E+00 -1.06E+01 -1.35E+01 -1.50E+01 | 0. E   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 9 2 2 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                              | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138<br>140<br>142<br>144 | 124<br>128<br>130<br>130<br>132<br>134<br>140<br>144<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71-43-2 -1.53E+00 -1.73E+00 -1.92E+00 -2.30E+00 -2.49E+00 -2.69E+00 -3.07E+00 -3.26E+00 -3.65E+00                                         | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>3.10E+00<br>3.21E+00<br>3.34E+00<br>3.56E+00             | 110-54-3<br>-2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00<br>-5.97E+00<br>-6.37E+00<br>-6.37E+00 | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.40E+00<br>1.40E+00<br>1.48E+00<br>1.52E+00<br>1.65E+00<br>1.65E+00<br>1.73E+00<br>1.73E+00 | 1330-20-7 I Rate (lbs/de -2.10E+00 -2.43E+00 -2.76E+00 -3.10E+00 -3.43E+00 -4.10E+00 -4.43E+00 -4.76E+00 -5.94E+00 -5.43E+00 -5.76E+00 | + T A A A A A A A A A A A A A A A A A A  | A L DE HOLL TO LEST TO  |                           | 71-43-2  -7.93E+00 -9.06E+00 -1.02E+01 -1.14E+01 -1.27E+01 -1.39E+01 -1.52E+01 -1.99E+01 -1.99E+01 -1.92E+01 -2.07E+01 -2.22E+01          | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.69E+01<br>1.78E+01<br>1.87E+01<br>1.97E+01<br>2.07E+01<br>2.16E+01 | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.94E+01<br>-2.18E+01<br>-2.70E+01<br>-2.97E+01<br>-3.25E+01<br>-3.82E+01<br>-4.12E+01                                                              | 108-88-3<br>g Period - ba:<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>8.15E+00<br>8.51E+00<br>9.24E+00<br>9.62E+00<br>1.00E+01<br>1.04E+01                                      | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01<br>-2.10E+01<br>-2.32E+01<br>-2.78E+01<br>-3.01E+01<br>-3.26E+01<br>-3.50E+01                                                                  | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00 -7.91E+00 -9.25E+00 -1.06E+01 -1.35E+01 -1.50E+01 | 0. E   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                    | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138<br>140<br>142<br>144 | 124<br>128<br>130<br>130<br>132<br>134<br>144<br>144<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71-43-2 -1.53E+00 -1.73E+00 -1.92E+00 -2.30E+00 -2.49E+00 -2.69E+00 -3.07E+00 -3.26E+00 -3.65E+00                                         | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>3.10E+00<br>3.21E+00<br>3.34E+00<br>3.56E+00             | 110-54-3<br>-2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00<br>-5.97E+00<br>-6.37E+00<br>-6.37E+00 | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.40E+00<br>1.40E+00<br>1.48E+00<br>1.52E+00<br>1.65E+00<br>1.65E+00<br>1.73E+00<br>1.73E+00 | 1330-20-7 I Rate (lbs/de -2.10E+00 -2.43E+00 -2.76E+00 -3.10E+00 -3.43E+00 -4.10E+00 -4.43E+00 -4.76E+00 -5.94E+00 -5.43E+00 -5.76E+00 | + T A A A A A A A A A A A A A A A A A A  | A L DE HOLL TO LEST TO  |                           | 71-43-2  -7.93E+00 -9.06E+00 -1.02E+01 -1.14E+01 -1.27E+01 -1.39E+01 -1.52E+01 -1.99E+01 -1.99E+01 -1.92E+01 -2.07E+01 -2.22E+01          | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.69E+01<br>1.78E+01<br>1.87E+01<br>1.97E+01<br>2.07E+01<br>2.16E+01 | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.94E+01<br>-2.18E+01<br>-2.70E+01<br>-2.97E+01<br>-3.25E+01<br>-3.82E+01<br>-4.12E+01                                                              | 108-88-3<br>g Period - ba:<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>8.15E+00<br>8.51E+00<br>9.24E+00<br>9.62E+00<br>1.00E+01<br>1.04E+01                                      | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01<br>-2.10E+01<br>-2.32E+01<br>-2.78E+01<br>-3.01E+01<br>-3.26E+01<br>-3.50E+01                                                                  | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00 -7.91E+00 -9.25E+00 -1.06E+01 -1.35E+01 -1.50E+01 | 0. E   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                    | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138<br>140<br>142<br>144 | 124<br>128<br>130<br>130<br>132<br>134<br>144<br>144<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71-43-2 -1.53E+00 -1.73E+00 -1.92E+00 -2.30E+00 -2.49E+00 -2.69E+00 -3.07E+00 -3.26E+00 -3.65E+00                                         | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>3.10E+00<br>3.21E+00<br>3.34E+00<br>3.56E+00             | 110-54-3<br>-2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00<br>-5.97E+00<br>-6.37E+00<br>-6.37E+00 | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.40E+00<br>1.40E+00<br>1.48E+00<br>1.52E+00<br>1.65E+00<br>1.65E+00<br>1.73E+00<br>1.73E+00 | 1330-20-7 I Rate (lbs/de -2.10E+00 -2.43E+00 -2.76E+00 -3.10E+00 -3.43E+00 -4.10E+00 -4.43E+00 -4.76E+00 -5.94E+00 -5.43E+00 -5.76E+00 | + T A A A A A A A A A A A A A A A A A A  | A L DE HOLL TO LEST TO  |                           | 71-43-2  -7.93E+00 -9.06E+00 -1.02E+01 -1.14E+01 -1.27E+01 -1.39E+01 -1.52E+01 -1.99E+01 -1.99E+01 -1.92E+01 -2.07E+01 -2.22E+01          | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.69E+01<br>1.78E+01<br>1.87E+01<br>1.97E+01<br>2.07E+01<br>2.16E+01 | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.94E+01<br>-2.18E+01<br>-2.70E+01<br>-2.97E+01<br>-3.25E+01<br>-3.82E+01<br>-4.12E+01                                                              | 108-88-3<br>g Period - ba:<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>8.15E+00<br>8.51E+00<br>9.24E+00<br>9.62E+00<br>1.00E+01<br>1.04E+01                                      | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01<br>-2.10E+01<br>-2.32E+01<br>-2.78E+01<br>-3.01E+01<br>-3.26E+01<br>-3.50E+01                                                                  | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00 -7.91E+00 -9.25E+00 -1.06E+01 -1.35E+01 -1.50E+01 | 0. E   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 9 2 2 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                              | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138<br>140<br>142<br>144 | 124<br>128<br>130<br>130<br>132<br>134<br>144<br>144<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71-43-2 -1.53E+00 -1.73E+00 -1.92E+00 -2.30E+00 -2.49E+00 -2.69E+00 -3.07E+00 -3.26E+00 -3.65E+00                                         | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>3.10E+00<br>3.21E+00<br>3.34E+00<br>3.56E+00             | 110-54-3<br>-2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00<br>-5.97E+00<br>-6.37E+00<br>-6.37E+00 | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.40E+00<br>1.40E+00<br>1.48E+00<br>1.52E+00<br>1.65E+00<br>1.65E+00<br>1.73E+00<br>1.73E+00 | 1330-20-7 I Rate (lbs/de -2.10E+00 -2.43E+00 -2.76E+00 -3.10E+00 -3.43E+00 -4.10E+00 -4.43E+00 -4.76E+00 -5.94E+00 -5.43E+00 -5.76E+00 | + T A A A A A A A A A A A A A A A A A A  | A L DE HOLL TO LEST TO  |                           | 71-43-2  -7.93E+00 -9.06E+00 -1.02E+01 -1.14E+01 -1.27E+01 -1.39E+01 -1.52E+01 -1.99E+01 -1.99E+01 -1.92E+01 -2.07E+01 -2.22E+01          | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.69E+01<br>1.78E+01<br>1.87E+01<br>1.97E+01<br>2.07E+01<br>2.16E+01 | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.94E+01<br>-2.18E+01<br>-2.70E+01<br>-2.97E+01<br>-3.25E+01<br>-3.82E+01<br>-4.12E+01                                                              | 108-88-3<br>g Period - ba:<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>8.15E+00<br>8.51E+00<br>9.24E+00<br>9.62E+00<br>1.00E+01<br>1.04E+01                                      | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01<br>-2.10E+01<br>-2.32E+01<br>-2.78E+01<br>-3.01E+01<br>-3.26E+01<br>-3.50E+01                                                                  | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00 -7.91E+00 -9.25E+00 -1.06E+01 -1.35E+01 -1.50E+01 | 0. E   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 9 2 2 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                              | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138<br>140<br>142<br>144 | 124<br>128<br>130<br>130<br>132<br>134<br>144<br>144<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71-43-2 -1.53E+00 -1.73E+00 -1.92E+00 -2.30E+00 -2.49E+00 -2.69E+00 -3.07E+00 -3.26E+00 -3.65E+00                                         | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>3.10E+00<br>3.21E+00<br>3.34E+00<br>3.56E+00             | 110-54-3<br>-2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00<br>-5.97E+00<br>-6.37E+00<br>-6.37E+00 | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.40E+00<br>1.40E+00<br>1.48E+00<br>1.52E+00<br>1.65E+00<br>1.65E+00<br>1.73E+00<br>1.73E+00 | 1330-20-7 I Rate (lbs/de -2.10E+00 -2.43E+00 -2.76E+00 -3.10E+00 -3.43E+00 -4.10E+00 -4.43E+00 -4.76E+00 -5.94E+00 -5.43E+00 -5.76E+00 | + T A A A A A A A A A A A A A A A A A A  | A L DE HOLL TO LEST TO  |                           | 71-43-2  -7.93E+00 -9.06E+00 -1.02E+01 -1.14E+01 -1.27E+01 -1.39E+01 -1.52E+01 -1.99E+01 -1.99E+01 -1.92E+01 -2.07E+01 -2.22E+01          | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.69E+01<br>1.78E+01<br>1.87E+01<br>1.97E+01<br>2.07E+01<br>2.16E+01 | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.94E+01<br>-2.18E+01<br>-2.70E+01<br>-2.97E+01<br>-3.25E+01<br>-3.82E+01<br>-4.12E+01                                                              | 108-88-3<br>g Period - ba:<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>8.15E+00<br>8.51E+00<br>9.24E+00<br>9.62E+00<br>1.00E+01<br>1.04E+01                                      | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01<br>-2.10E+01<br>-2.32E+01<br>-2.78E+01<br>-3.01E+01<br>-3.26E+01<br>-3.50E+01                                                                  | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00 -7.91E+00 -9.25E+00 -1.06E+01 -1.35E+01 -1.50E+01 | 0. E   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 9 2 2 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                              | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138<br>140<br>142<br>144 | 124<br>128<br>130<br>130<br>132<br>134<br>144<br>144<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71-43-2 -1.53E+00 -1.73E+00 -1.92E+00 -2.30E+00 -2.49E+00 -2.69E+00 -3.07E+00 -3.26E+00 -3.65E+00                                         | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>3.10E+00<br>3.21E+00<br>3.34E+00<br>3.56E+00             | 110-54-3<br>-2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00<br>-5.97E+00<br>-6.37E+00<br>-6.37E+00 | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.40E+00<br>1.40E+00<br>1.48E+00<br>1.52E+00<br>1.65E+00<br>1.65E+00<br>1.73E+00<br>1.73E+00 | 1330-20-7 I Rate (lbs/de -2.10E+00 -2.43E+00 -2.76E+00 -3.10E+00 -3.43E+00 -4.10E+00 -4.43E+00 -4.76E+00 -5.94E+00 -5.43E+00 -5.76E+00 | + T A A A A A A A A A A A A A A A A A A  | A L DE HOLL TO LEST TO  |                           | 71-43-2  -7.93E+00 -9.06E+00 -1.02E+01 -1.14E+01 -1.27E+01 -1.39E+01 -1.52E+01 -1.99E+01 -1.99E+01 -1.92E+01 -2.07E+01 -2.22E+01          | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.35E+01<br>1.43E+01<br>1.52E+01<br>1.69E+01<br>1.78E+01<br>1.87E+01<br>1.97E+01<br>2.07E+01<br>2.16E+01 | 110-54-3<br>moved during<br>-1.23E+01<br>-1.46E+01<br>-1.94E+01<br>-2.18E+01<br>-2.70E+01<br>-2.97E+01<br>-3.25E+01<br>-3.82E+01<br>-4.12E+01                                                              | 108-88-3<br>g Period - ba:<br>6.79E+00<br>7.12E+00<br>7.45E+00<br>8.15E+00<br>8.51E+00<br>9.24E+00<br>9.62E+00<br>1.00E+01<br>1.04E+01                                      | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.89E+01<br>-2.10E+01<br>-2.32E+01<br>-2.78E+01<br>-3.01E+01<br>-3.26E+01<br>-3.50E+01                                                                  | of operation -5.96E-01 -1.73E+00 -2.89E+00 -4.09E+00 -5.33E+00 -6.60E+00 -7.91E+00 -9.25E+00 -1.06E+01 -1.35E+01 -1.50E+01 | 0. E   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| 9 2 2 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                              | 124<br>126<br>128<br>130<br>132<br>134<br>136<br>138<br>140<br>142<br>144 | 124<br>128<br>130<br>130<br>132<br>134<br>144<br>144<br>144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71-43-2 -1.53E+00 -1.73E+00 -1.92E+00 -2.30E+00 -2.49E+00 -2.69E+00 -3.07E+00 -3.26E+00 -3.65E+00                                         | 2.30E+00<br>2.41E+00<br>2.53E+00<br>2.64E+00<br>2.76E+00<br>2.87E+00<br>3.10E+00<br>3.21E+00<br>3.34E+00<br>3.56E+00             | 110-54-3<br>-2.37E+00<br>-2.77E+00<br>-3.17E+00<br>-3.57E+00<br>-4.37E+00<br>-4.77E+00<br>-5.17E+00<br>-5.97E+00<br>-6.37E+00<br>-6.37E+00 | 108-88-3<br>Daily Remova<br>1.31E+00<br>1.40E+00<br>1.40E+00<br>1.48E+00<br>1.52E+00<br>1.65E+00<br>1.65E+00<br>1.73E+00<br>1.73E+00 | 1330-20-7 I Rate (lbs/de -2.10E+00 -2.43E+00 -2.76E+00 -3.10E+00 -3.43E+00 -4.10E+00 -4.43E+00 -4.76E+00 -5.94E+00 -5.43E+00 -5.76E+00 | + T A A A A A A A A A A A A A A A A A A  | \$\frac{a}{4} \frac{a}{5} \frac | 10(1)                     | 71-43-2  -7.93E+00 -9.06E+00 -1.02E+01 -1.14E+01 -1.27E+01 -1.39E+01 -1.52E+01 -1.99E+01 -1.99E+01 -1.92E+01 -2.07E+01 -2.22E+01          | 100-41-4<br>Mass Re<br>1.19E+01<br>1.27E+01<br>1.25E+01<br>1.43E+01<br>1.52E+01<br>1.60E+01<br>1.69E+01<br>1.78E+01<br>1.87E+01<br>2.07E+01<br>2.07E+01 | 110-54-3<br>moved duty<br>1-1,23E-01<br>1-1,23E-01<br>1-1,69E-01<br>1-1,69E-01<br>1-1,94E-01<br>1-2,14E-01<br>1-2,14E-01<br>2-2,14E-01<br>2-2,97E-01<br>3-2,59E-01<br>3-3,53E-01<br>3-4,53E-01<br>6-76E+00 | 108-88-3<br>9 Period - base<br>6.79E+00<br>7.12E+00<br>7.80E+00<br>7.80E+00<br>8.51E+00<br>8.51E+00<br>9.24E+00<br>9.62E+00<br>1.00E+01<br>1.04E+01<br>1.04E+01<br>7.15E+00 | 1330-20-7<br>sed on hours<br>-1.08E+01<br>-1.28E+01<br>-1.47E+01<br>-1.68E+01<br>-1.68E+01<br>-2.10E+01<br>-2.25E+01<br>-2.75E+01<br>-3.26E+01<br>-3.26E+01<br>-3.26E+01<br>-3.40E+01<br>-3.40E+01<br>-3.40E+01<br>-3.40E+01<br>-3.40E+01 |                                                                                                                            | 0. E   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |

### EMISSION ARCHIVE WORKSHEET EXAMPLE

| Good Lii                                                            | fe. Great E                                                                    | nvironme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ent.                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                                                                              |                                                                                                                          |                                                                                                                                          |                                                                                                  |                                                                                                                |                                                                      |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Dept. c                                                             | of Environm                                                                    | nent& Ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rgy                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vapo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r Extrac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion (V                                                                          | E) and/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or Air St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ripper (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (AS) - Eı                                                                                                  | mission                                                                                                      | Archive                                                                                                                  | e Works                                                                                                                                  | heet                                                                                             |                                                                                                                | v. 4/7/202                                                           |
| ole Date                                                            | Combined Excess<br>Lifetime Cancer Risk                                        | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ethylbenzene                                                                                             | Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Toluene<br>(Methylbenzene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Petroleum<br>Hydrocarbons<br>(TPH)                                         | Sum of HAP<br>(excluding TEH<br>and TPH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Enter an extra<br>chemical of<br>concern here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ethylbenzene                                                                                               | Hexane                                                                                                       | Toluene<br>(Methylbenzene)                                                                                               | Xylenes                                                                                                                                  | Sum of TEH (sum<br>of gas, diesel, oil)                                                          | Sum of HAP<br>(excluding TEH<br>and TPH)                                                                       | (Not Used)                                                           |
| Sample                                                              | Combine<br>Lifetime (                                                          | 71-43-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100-41-4                                                                                                 | 110-54-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108-88-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1330-20-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71-43-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100-41-4                                                                                                   | 110-54-3                                                                                                     | 108-88-3                                                                                                                 | 1330-20-7                                                                                                                                |                                                                                                  |                                                                                                                |                                                                      |
|                                                                     |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                                                                              | Emission                                                                                                                 | . ,                                                                                                                                      |                                                                                                  |                                                                                                                |                                                                      |
| 1/1/2001<br>2/1/2001                                                | 1.18E-01<br>1.18E-01                                                           | 2.38E+02<br>2.46E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.49E+02<br>3.49E+02                                                                                     | 9.30E+01<br>1.93E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.44E+01<br>3.14E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.39E+01<br>8.31E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.44E+02<br>2.64E+02                                                             | 1.13E+04<br>1.63E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.79E+03<br>2.79E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.82E+03<br>5.12E+03                                                                                       | 8.45E+03<br>1.05E+04                                                                                         | 4.66E+03<br>4.16E+03                                                                                                     | 6.37E+03<br>7.37E+03                                                                                                                     | 1.05E+04<br>1.15E+04                                                                             | 5.24E+05<br>5.44E+05                                                                                           |                                                                      |
| 3/1/2001<br>4/1/2001                                                | 1.18E-01<br>1.18E-01                                                           | 2.38E+02<br>2.30E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.49E+02<br>1.49E+02                                                                                     | 9.30E+01<br>-7.03E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.44E+01<br>-2.46E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.39E+01<br>-6.63E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.44E+02<br>2.37E+01                                                             | 1.13E+04<br>6.25E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.79E+03<br>7.88E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.82E+03<br>6.52E+03                                                                                       | 8.45E+03<br>6.45E+03                                                                                         | 4.66E+03<br>5.16E+03                                                                                                     | 6.37E+03<br>5.37E+03                                                                                                                     | 1.05E+04<br>9.45E+03                                                                             | 5.24E+05<br>5.04E+05                                                                                           |                                                                      |
| 5/1/2001                                                            | 1.18E-01                                                                       | 2.30E+02<br>2.22E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          | -1.03E+00<br>-1.07E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.63E+02<br>-1.41E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -9.63E+01                                                                        | 1.25E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.12E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.22E+03                                                                                                   | 4.45E+03                                                                                                     | 5.66E+03                                                                                                                 | 4.37E+03                                                                                                                                 | 9.45E+03<br>8.45E+03                                                                             | 4.84E+05                                                                                                       |                                                                      |
| 6/1/2001                                                            | 1.18E-01                                                                       | 2.14E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -5.13E+01                                                                                                | -2.07E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -8.06E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.16E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2.16E+02                                                                        | -3.75E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.21E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.92E+03                                                                                                   | 2.45E+03                                                                                                     | 6.16E+03                                                                                                                 | 3.37E+03                                                                                                                                 | 7.45E+03                                                                                         | 4.64E+05                                                                                                       |                                                                      |
| 7/1/2001                                                            | 1.18E-01                                                                       | 2.06E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.51E+02                                                                                                | -3.07E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.09E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2.90E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3.36E+02                                                                        | -8.75E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.21E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.62E+03                                                                                                   | 4.51E+02                                                                                                     | 6.66E+03                                                                                                                 | 2.37E+03                                                                                                                                 | 6.45E+03                                                                                         | 4.44E+05                                                                                                       |                                                                      |
| 8/1/2001<br>9/1/2001                                                | 1.18E-01<br>1.18E-01                                                           | 1.98E+02<br>1.90E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.51E+02<br>-3.51E+02                                                                                   | -4.07E+02<br>-5.07E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.37E+03<br>-1.65E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.65E+03<br>-4.40E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -4.56E+02<br>-5.76E+02                                                           | -1.37E+04<br>-1.87E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3.21E+03<br>-4.21E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.32E+03<br>1.00E+04                                                                                       | -1.55E+03<br>-3.55E+03                                                                                       | 7.16E+03<br>7.66E+03                                                                                                     | 1.37E+03<br>3.67E+02                                                                                                                     | 5.45E+03<br>4.45E+03                                                                             | 4.24E+05<br>4.04E+05                                                                                           |                                                                      |
| 10/1/2001                                                           | 1.18E-01                                                                       | 1.82E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -4.51E+02                                                                                                | -6.07E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.93E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -5.15E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -6.96E+02                                                                        | -2.37E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5.21E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.07E+04                                                                                                   | -5.55E+03                                                                                                    | 8.16E+03                                                                                                                 | -6.33E+02                                                                                                                                | 3.45E+03                                                                                         | 3.84E+05                                                                                                       |                                                                      |
| 11/1/2001                                                           | 1.18E-01                                                                       | 1.74E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          | -7.07E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5.89E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -8.16E+02                                                                        | -2.87E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -6.21E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.14E+04                                                                                                   | -7.55E+03                                                                                                    | 8.66E+03                                                                                                                 | -1.63E+03                                                                                                                                | 2.45E+03                                                                                         | 3.64E+05                                                                                                       |                                                                      |
| 12/1/2001                                                           | 1.18E-01                                                                       | 1.66E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -6.51E+02                                                                                                | -8.07E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.49E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6.64E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -9.36E+02                                                                        | -3.37E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -7.21E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21E+04                                                                                                   | -9.55E+03                                                                                                    | 9.16E+03                                                                                                                 | -2.63E+03                                                                                                                                | 1.45E+03                                                                                         | 3.44E+05                                                                                                       |                                                                      |
|                                                                     |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            |                                                                                                              |                                                                                                                          |                                                                                                                                          |                                                                                                  |                                                                                                                |                                                                      |
|                                                                     |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (aanti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  | t ~ 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a +la a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mua a d                                                                                                    | (alaaat)                                                                                                     |                                                                                                                          |                                                                                                                                          |                                                                                                  |                                                                                                                |                                                                      |
|                                                                     |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (conti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nued h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iorizo                                                                           | ntally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | acros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pread                                                                                                      | sheet)                                                                                                       |                                                                                                                          |                                                                                                                                          |                                                                                                  |                                                                                                                |                                                                      |
| ours of Operation<br>last sampling event                            | ours of Operation<br>last sampling event                                       | Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ethylbenzene                                                                                             | Hexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Toluene (Methylbenzene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Xylenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | norizo                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | across (Not Used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Epread                                                                                                     | Sheet)                                                                                                       | Toluene<br>(Methylbenzene)                                                                                               | Xylenes                                                                                                                                  | ТРН + ТЕН                                                                                        | Sum of HAP<br>(excluding TEH<br>and TPH)                                                                       | (Not Used)                                                           |
| of Operat<br>sampling                                               | ours of Operat<br>last sampling                                                | 9 US ZO US OF US O | Ethylbenzene                                                                                             | euex<br>9H<br>110-54-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 전 Toluene<br>용용 (Methylbenzene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | səuəl/xx<br>1330-20-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : ТРН + ТЕН                                                                      | HAP<br>ng TEH<br>1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ethylbenzene                                                                                               | euex<br>9H<br>110-54-3                                                                                       | 108-88-3                                                                                                                 | 1330-20-7                                                                                                                                |                                                                                                  | Sum of<br>(exclud<br>and TP                                                                                    | (Not Used)                                                           |
| VE Hours of Operat<br>since last sampling                           | AS Hours of Operat<br>since last sampling                                      | 71-43-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100-41-4                                                                                                 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tolnene<br>18.88-30<br>19.88-30<br>19.88-30<br>19.88-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$0<br>\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\                                                                                                                                                                                                          | <br><br><br><br><br><br><br><br><br><br><br><br>                                 | Sum of HAP<br>; (excluding TEH<br>and TPH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Not Used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>Bell2<br>Bell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell2<br>Pell | euezeue<br>Ethylpenzeue<br>100-41-4<br>Mass Rem                                                            | Sage<br>H<br>110-54-3<br>oved during                                                                         | 108-88-3<br>Period - bas                                                                                                 | 1330-20-7<br>sed on hours                                                                                                                | of operation                                                                                     | <br>n (pounds)                                                                                                 | (Not                                                                 |
| VE Hours of Operal<br>since last sampling                           | AS Hours of Operat<br>since last sampling                                      | 71-43-2<br>3.86E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100-41-4<br>1.16E+00                                                                                     | egex H<br>110-54-3<br>Da<br>1.63E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Methylpenzene) 108-88-3 ily Removal 8.95E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ######################################                                           | Sum of HAP (excluding TEH and TPH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Not Used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9<br>20<br>20<br>20<br>80<br>71-43-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9uesz<br>ueg<br>I/Ata<br>100-41-4<br>Mass Rem<br>4.82E+00                                                  | eg<br>ex<br><u>H</u><br>110-54-3<br>oved during<br>6.78E+00                                                  | 108-88-3<br>Period - bas<br>3.73E+00                                                                                     | 1330-20-7<br>sed on hours<br>5.12E+00                                                                                                    | of operation<br>8.41E+00                                                                         | <br>n (pounds)<br>4.25E+02                                                                                     | 0.00E+                                                               |
| VE Hours of Operal<br>Since last sampling                           | AS Hours of Operat<br>since last sampling                                      | 71-43-2<br>3.86E-01<br>5.78E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.16E+00<br>1.04E+00                                                                                     | 2 Ex 110-54-3  Da: 1.63E+00 2.03E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Wethylogonal of the control of the | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ## + ## + ## + ## + ## + ## + ## + ##                                            | Sum of HAP<br>(excluding TEH<br>and TPH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Not Dsed)<br>(0.000-300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 6 7 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90 97 97 97 97 97 97 97 97 97 97 97 97 97                                                                  | 2 Ex<br>110-54-3<br>oved during<br>6.78E+00<br>8.62E+00                                                      | 108-88-3<br>Period - bas<br>3.73E+00<br>3.63E+00                                                                         | 1330-20-7<br>sed on hours<br>5.12E+00<br>6.64E+00                                                                                        | <br>of operation<br>8.41E+00<br>9.48E+00                                                         | <br>n (pounds)<br>4.25E+02<br>4.54E+02                                                                         | 0.00E-<br>0.00E-                                                     |
| VE Hours of Operal<br>NE Hours of Operal<br>since last sampling     | AS Hours of Operat<br>201<br>8ince last sampling                               | 71-43-2<br>3.86E-01<br>5.78E-01<br>3.86E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.16E+00<br>1.04E+00<br>1.16E+00                                                                         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (weth/lpeuzeue) 108-88-3 1ly Removal 8.98E-01 8.53E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1330-20-7<br>Rate (lbs/dc<br>1.23E+00<br>1.56E+00<br>1.23E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T H H H H H H H H H H H H H H H H H H H                                          | 9 (excluding TEH<br>(excluding TEH<br>1.07E+02<br>1.07E+02<br>1.02E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Not 100 (Not 0.00 (Not 0. | 9 4 5 2 4 6 6 6 7 1-43-2 1.61E+00 2.46E+00 1.67E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007                                               | 2<br>2<br>3<br>110-54-3<br>oved during<br>6.78E+00<br>8.62E+00<br>7.05E+00                                   | 108-88-3<br>Period - bas<br>3.73E+00<br>3.63E+00<br>3.88E+00                                                             | 1330-20-7<br>sed on hours<br>5.12E+00<br>6.64E+00<br>5.32E+00                                                                            | <br>s of operation<br>8.41E+00<br>9.48E+00<br>8.74E+00                                           | <br>n (pounds)<br>4.25E+02<br>4.54E+02<br>4.42E+02                                                             | 0.00E<br>0.00E<br>0.00E                                              |
| VE Hours of Operal<br>Since last sampling                           | AS Hours of Operat<br>since last sampling                                      | 71-43-2<br>3.86E-01<br>5.78E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.16E+00<br>1.04E+00                                                                                     | 2 Ex 110-54-3  Da: 1.63E+00 2.03E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Wethylogonal of the control of the | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ## + ## + ## + ## + ## + ## + ## + ##                                            | Sum of HAP<br>(excluding TEH<br>and TPH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Not Dsed)<br>(0.000-300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 6 7 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90 97 97 97 97 97 97 97 97 97 97 97 97 97                                                                  | 2 Ex<br>110-54-3<br>oved during<br>6.78E+00<br>8.62E+00                                                      | 108-88-3<br>Period - bas<br>3.73E+00<br>3.63E+00                                                                         | 1330-20-7<br>sed on hours<br>5.12E+00<br>6.64E+00                                                                                        | <br>of operation<br>8.41E+00<br>9.48E+00                                                         | <br>n (pounds)<br>4.25E+02<br>4.54E+02                                                                         | 0.00E                                                                |
| VE Hours of Operal<br>100<br>102<br>104<br>106<br>108<br>110        | AS Hours of Operat since last sampling 100 108 110 110 110 110 110 110 110 110 | 71-43-2<br>3.86E-01<br>5.78E-01<br>3.86E-01<br>1.94E-01<br>1.82E-03<br>-1.90E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.16E+00<br>1.04E+00<br>1.16E+00<br>1.27E+00<br>1.39E+00<br>1.50E+00                                     | 202 H00 1.63E+00 1.23E+00 1.23E+00 4.27E-01 4.27E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (euazuagi<br>auennoL<br>108-88-3<br>ily Removal<br>8.55E-01<br>9.37E-01<br>9.37E-01<br>1.02E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ### ##################################                                           | - (excinding TEH<br>1.02E+02:<br>1.07E+02:<br>1.02E+02:<br>1.02E+02:<br>1.02E+02:<br>9.72E+01<br>9.24E+01<br>8.77E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71-43-2<br>1.61E+00<br>2.46E+00<br>1.67E+00<br>8.56E-01<br>8.21E-03<br>8.72E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ## 100-41-4<br>  Mass Rem<br>  4.82E+00<br>  4.43E+00<br>  5.61E+00<br>  6.22E+00<br>  6.87E+00            | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                        | 108-88-3<br>Period - bas<br>3.73E+00<br>3.63E+00<br>3.88E+00<br>4.14E+00<br>4.40E+00<br>4.68E+00                         | 1330-20-7<br>sed on hours<br>5.12E+00<br>6.64E+00<br>5.32E+00<br>3.96E+00<br>2.53E+00<br>1.06E+00                                        | <br>8.41E+00<br>9.48E+00<br>8.74E+00<br>7.97E+00<br>7.16E+00<br>6.32E+00                         | (pounds)<br>4.25E+02<br>4.54E+02<br>4.42E+02<br>4.29E+02<br>4.16E+02<br>4.02E+02                               | 0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E                   |
| VE Hours of Operal 100 102 104 106 108 110 112                      | AS Hours of Operat<br>100<br>102<br>104<br>108<br>110<br>1112                  | 71-43-2<br>3.86E-01<br>5.78E-01<br>3.86E-01<br>1.94E-01<br>1.82E-03<br>-1.90E-01<br>-3.82E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.16E+00<br>1.04E+00<br>1.16E+00<br>1.27E+00<br>1.39E+00<br>1.50E+00<br>1.61E+00                         | Ex y 1<br>110-54-3 Da.<br>1.63E+00<br>2.03E+00<br>1.63E+00<br>1.23E+00<br>8.27E-01<br>4.27E-01<br>2.74E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (eueszuegen (eueszuegen))))). (()) (()) (()) (()) (()) (()) ((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1330-20-7<br>Rate (lbs/de<br>1.23E+00<br>1.25E+00<br>1.25E+00<br>2.30E-01<br>1.02E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130<br>140<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>15                | 1.02E+02<br>1.07E+02<br>1.07E+02<br>1.07E+02<br>1.07E+02<br>1.07E+03<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.0 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 987<br>997<br>100-41-4<br>Mass Rem<br>4.82E+00<br>5.01E+00<br>6.23E+00<br>6.87E+00<br>7.53E+00             | egy<br>y<br>1110-54-3<br>oved during<br>6.78E+00<br>8.62E+00<br>7.05E+00<br>3.72E+00<br>1.96E+00<br>1.28E-01 | 108-88-3<br>Period - bas<br>3.73E+00<br>3.63E+00<br>3.88E+00<br>4.14E+00<br>4.40E+00<br>4.68E+00<br>4.96E+00             | 1330-20-7<br>sed on hours<br>5.12E+00<br>6.64E+00<br>5.32E+00<br>3.96E+00<br>2.53E+00<br>1.06E+00<br>-4.77E-01                           | <br>8.41E+00<br>9.48E+00<br>8.74E+00<br>7.97E+00<br>7.16E+00<br>6.32E+00<br>5.43E+00             | (pounds)<br>4.25E+02<br>4.54E+02<br>4.42E+02<br>4.29E+02<br>4.16E+02<br>4.02E+02<br>3.87E+02                   | 0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E          |
| VE Hours of Operal<br>100<br>100<br>100<br>100<br>101<br>112<br>114 | AS Hours of Operat<br>100<br>102<br>104<br>106<br>108<br>110<br>1112<br>114    | 3.86E-01<br>5.78E-01<br>3.86E-01<br>1.94E-01<br>1.82E-03<br>-1.90E-01<br>-3.82E-01<br>-5.74E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.16E+00<br>1.04E+00<br>1.16E+00<br>1.16E+00<br>1.39E+00<br>1.50E+00<br>1.61E+00<br>1.73E+00             | 2 8 8 110-54-3 Da 1.63E+00 1.23E+00 1.23E+00 1.23E+00 1.27E-01 2.74E-02 -3.73E-01 3.73E-01 3. | (a) B 2 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$\frac{9}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac | 2.02E+00<br>2.02E+00<br>2.02E+00<br>1.80E+00<br>1.59E+00<br>1.16E+00<br>9.51E-01 | 1.02E+02<br>1.07E+02<br>1.07E+02<br>1.07E+02<br>1.07E+02<br>9.72E+01<br>9.24E+01<br>8.29E+01<br>7.81E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Note +00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71-43-2<br>1.61E+00<br>2.46E+00<br>1.67E+00<br>8.56E-01<br>8.21E-03<br>8.72E-01<br>1.78E+00<br>2.73E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ## 100-41-4<br>## Mass Rem<br>4.82E+00<br>4.43E+00<br>5.61E+00<br>6.23E+00<br>7.53E+00<br>8.21E+00         | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                      | 108-88-3<br>Period - bas<br>3.73E+00<br>3.63E+00<br>3.88E+00<br>4.14E+00<br>4.40E+00<br>4.96E+00<br>5.25E+00             | 1330-20-7<br>sed on hours<br>5.12E+00<br>6.64E+00<br>5.32E+00<br>2.53E+00<br>1.06E+00<br>-4.77E-01<br>-2.07E+00                          | <br>8.41E+00<br>9.48E+00<br>8.74E+00<br>7.97E+00<br>7.16E+00<br>6.32E+00<br>5.43E+00<br>4.52E+00 | (pounds)<br>4.25E+02<br>4.54E+02<br>4.42E+02<br>4.16E+02<br>4.02E+02<br>3.87E+02<br>3.71E+02                   | 0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E          |
| VE Hours of Operal 100 102 104 106 108 110 112                      | AS Hours of Operat<br>100<br>102<br>104<br>108<br>110<br>1112                  | 3.86E-01<br>5.78E-01<br>3.86E-01<br>1.94E-01<br>1.82E-03<br>-1.90E-01<br>-3.82E-01<br>-5.74E-01<br>-7.66E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.16E+00<br>1.04E+00<br>1.16E+00<br>1.27E+00<br>1.39E+00<br>1.50E+00<br>1.61E+00                         | 110-54-3<br>Da<br>1.63E+00<br>2.03E+00<br>1.63E+00<br>1.23E+00<br>4.27E-01<br>2.74E-02<br>-3.73E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 4970 41990 108-88-3 119 Removal 8.95E-01 8.95E-01 9.37E-01 1.02E+00 1.10E+00 1.15E+00 1.15E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39)<br>2.02E+00<br>2.02E+00<br>1.80E+00<br>1.38E+00<br>9.51E-01<br>7.38E-01      | 1.02E+02<br>1.07E+02<br>1.07E+02<br>1.07E+02<br>1.07E+02<br>1.07E+03<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.07E+04<br>1.0 | 0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 246E+00<br>1.61E+00<br>1.67E+00<br>8.56E-01<br>8.21E-03<br>8.72E-01<br>1.78E+00<br>2.73E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 100-41-4<br>Mass Rem<br>4.82E+00<br>5.01E+00<br>5.01E+00<br>6.23E+00<br>6.27E+00<br>8.21E+00<br>8.21E+00 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                        | 108-88-3<br>Period - bas<br>3.73E+00<br>3.63E+00<br>3.88E+00<br>4.14E+00<br>4.40E+00<br>4.96E+00<br>5.25E+00<br>5.54E+00 | 1330-20-7<br>sed on hours<br>5.12E+00<br>6.64E+00<br>5.32E+00<br>3.96E+00<br>2.53E+00<br>1.06E+00<br>-4.77E-01<br>-2.07E+00<br>-3.71E+00 | <br>8.41E+00<br>9.48E+00<br>8.74E+00<br>7.97E+00<br>7.16E+00<br>6.32E+00<br>4.52E+00<br>3.57E+00 | <br>n (pounds)<br>4.25E+02<br>4.54E+02<br>4.42E+02<br>4.29E+02<br>4.02E+02<br>3.87E+02<br>3.71E+02<br>3.55E+02 | 0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E |
| 100 100 100 100 100 100 100 100 100 100                             | AS Hours of Operat<br>100<br>102<br>104<br>106<br>110<br>112<br>114<br>116     | 3.86E-01<br>5.78E-01<br>3.86E-01<br>1.94E-01<br>1.82E-03<br>-1.90E-01<br>-3.82E-01<br>-5.74E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.16E+00<br>1.04E+00<br>1.16E+00<br>1.27E+00<br>1.39E+00<br>1.50E+00<br>1.73E+00<br>1.73E+00<br>1.84E+00 | 2 8 8 110-54-3 Da 1.63E+00 1.23E+00 1.23E+00 1.23E+00 1.27E-01 2.74E-02 -3.73E-01 3.73E-01 3. | (a) B 2 2 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$\frac{9}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac{1}{\sqrt{5}}\$\$\frac | 2.02E+00<br>2.02E+00<br>2.02E+00<br>1.80E+00<br>1.59E+00<br>1.16E+00<br>9.51E-01 | HHAD HAD HAD HAD HAD HAD HAD HAD HAD HAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Note +00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71-43-2<br>1.61E+00<br>2.46E+00<br>1.67E+00<br>8.56E-01<br>8.21E-03<br>8.72E-01<br>1.78E+00<br>2.73E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ## 100-41-4<br>## Mass Rem<br>4.82E+00<br>4.43E+00<br>5.61E+00<br>6.23E+00<br>7.53E+00<br>8.21E+00         | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                      | 108-88-3<br>Period - bas<br>3.73E+00<br>3.63E+00<br>3.88E+00<br>4.14E+00<br>4.40E+00<br>4.96E+00<br>5.25E+00             | 1330-20-7<br>sed on hours<br>5.12E+00<br>6.64E+00<br>5.32E+00<br>2.53E+00<br>1.06E+00<br>-4.77E-01<br>-2.07E+00                          | <br>8.41E+00<br>9.48E+00<br>8.74E+00<br>7.97E+00<br>7.16E+00<br>6.32E+00<br>5.43E+00<br>4.52E+00 | (pounds)<br>4.25E+02<br>4.54E+02<br>4.42E+02<br>4.16E+02<br>4.02E+02<br>3.87E+02<br>3.71E+02                   | 0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E                            |

#### TABLE 1 WORKSHEET EXAMPLE



#### Petroleum Remediation Section Air Emissions Calculation Workbook Vapor Extraction (VE) and/or Air Stripper (AS) SCREEN3 Model Inputs

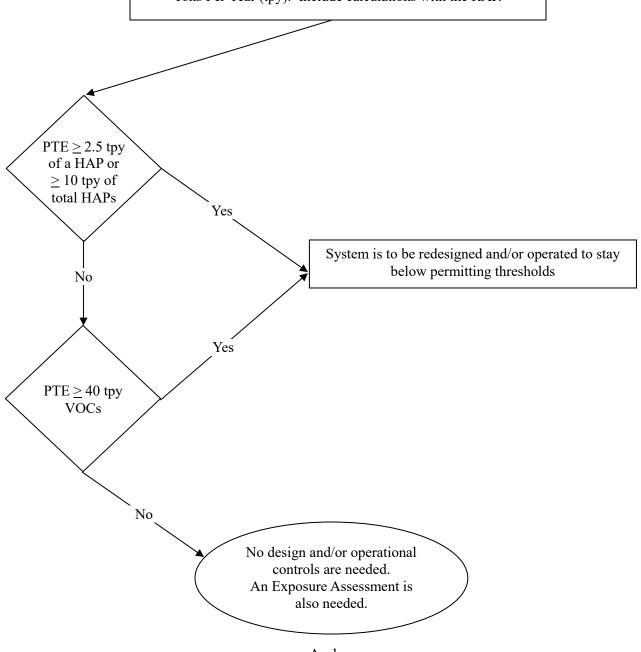
Dept. of Environment & Energy

v. 4/7/2020

#### Table 1. SCREEN 3 Model Inputs

Values Used (meters)

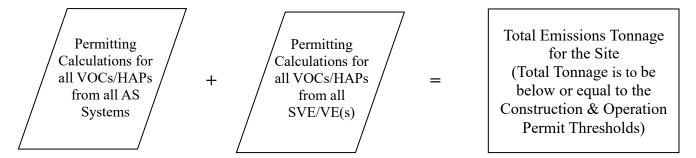
| Parameter                                           | Inputs or Ranges of Inputs                         |       | VE                                                 | Mod                | el              |   | AS Model |                   | el                 |                 |   |
|-----------------------------------------------------|----------------------------------------------------|-------|----------------------------------------------------|--------------------|-----------------|---|----------|-------------------|--------------------|-----------------|---|
| Source Type                                         | Point <sup>†</sup>                                 |       |                                                    | Point <sup>†</sup> |                 |   |          |                   | Point <sup>†</sup> |                 |   |
| Terrain Options                                     | Flat <sup>†</sup>                                  |       |                                                    | Flat <sup>†</sup>  |                 |   |          | Flat <sup>†</sup> |                    |                 |   |
| Fumigation                                          | Inversion Break-up <sup>†</sup>                    | In    | Inversion Break-up <sup>†</sup> Inversion Break-up |                    | t               |   |          |                   |                    |                 |   |
| Rural/Urban                                         | Urban <sup>†</sup>                                 |       | Urban <sup>†</sup> Urban <sup>†</sup>              |                    |                 |   |          |                   |                    |                 |   |
| Meteorology                                         | All Stab. & WS <sup>†</sup>                        |       | All St                                             | ab. &              | WS <sup>†</sup> |   |          | All St            | ab. &              | WS <sup>†</sup> |   |
| Ambient and Exhaust Temperature (K)                 | 293.15 <sup>†</sup>                                |       | 2                                                  | 93.15 <sup>1</sup> | t               |   |          | 2                 | 93.15              | t               |   |
| Mixing Heights                                      | Regulatory <sup>†</sup>                            |       | Red                                                | gulatoi            | ry <sup>†</sup> |   |          | Re                | gulato             | ry <sup>†</sup> |   |
| Anemometer Height (m)                               | 10 <sup>†</sup>                                    |       |                                                    | 10 <sup>†</sup>    | •               |   |          |                   | 10 <sup>†</sup>    | •               |   |
| Emission Rate (q/s)                                 | 1 <sup>†</sup>                                     |       |                                                    | $1^{\dagger}$      |                 |   |          |                   | 1 <sup>†</sup>     |                 |   |
| Stack Height (m)                                    | 3, 6, 9, 12 (10, 20, 30, 39 ft)                    |       |                                                    |                    |                 |   |          |                   |                    |                 |   |
| Stack Diameter (m)                                  | 0.05, 0.10, 0.15, 0.20 (2, 4, 6, 8 inches)         |       |                                                    |                    |                 |   |          |                   |                    |                 |   |
| Exhaust Velocity (m/s)                              | 0.91, 5.49, 10.06, 14.63, 19.2, 23.77 (calculated) |       |                                                    |                    |                 |   |          |                   |                    |                 |   |
| Exhaust Flow Rate (m <sup>3</sup> /s)               | Variable (CFM)                                     |       |                                                    |                    |                 |   |          |                   |                    |                 |   |
|                                                     |                                                    | Stack | N                                                  | S                  | Е               | W | Stack    | N                 | S                  | Е               | W |
| Building Distance (m)                               | Less than 804 (2640 ft)                            | -     | 0                                                  | 0                  | 0               | 0 | -        | 0                 | 0                  | 0               | 0 |
| Building Height at roof peak* (m)                   | 3, 5, 6, 8, 9, 12 (10, 16, 20, 26, 30, 39 ft)      |       |                                                    |                    |                 |   |          |                   |                    |                 |   |
| Building Width perpendicular to wind direction* (m) | 3, 6, 9, 23 (10, 20, 30, 75 ft)                    |       |                                                    |                    |                 |   |          |                   |                    |                 |   |
| Building Length parallel to wind direction* (m)     | 3, 6, 9, 23 (10, 20, 30, 75 ft)                    |       |                                                    |                    |                 |   |          |                   |                    |                 |   |


NOTES: † default, cannot be changed by user

<sup>\*</sup>only used if the building distance is within the Area of Influence (AOI) based on the other model parameters

## NDEE Air Emissions Guidance For Petroleum Remediation Sites Evaluation Flow Chart

(See Page 1 for Definitions of Acronyms)


RP or contracted consultant is to calculate PTE values for each emission point for the site and add all values to determine total Tons Per Year (tpy). Include calculations with the RAP.



## NDEE Air Emissions Guidance For Petroleum Remediation Sites Evaluation Flow Chart, Continued

#### **Permitting Calculations**

If the proposed remediation system uses more than one remediation technology (e.g., AS and SVE/VE) that emits pollutants (VOCs/HAPs) to the atmosphere, then the permitting calculations for emissions from each system are to be derived individually and the sum of the results calculated to determine the total tonnage of pollutant(s) being emitted. In addition, the calculation is to be completed for each pollutant and combination of pollutants.



#### Calculating Construction/Operating Permit Tonnages

The emissions for the permitting tonnages ( $T_{tot}$ ) are to be equal to or less than the permitting thresholds for a period of time equal to one year. When determining the emissions for the first year, the most current sampling results (in tons) are added to those of the previous months to provide the total tonnage.

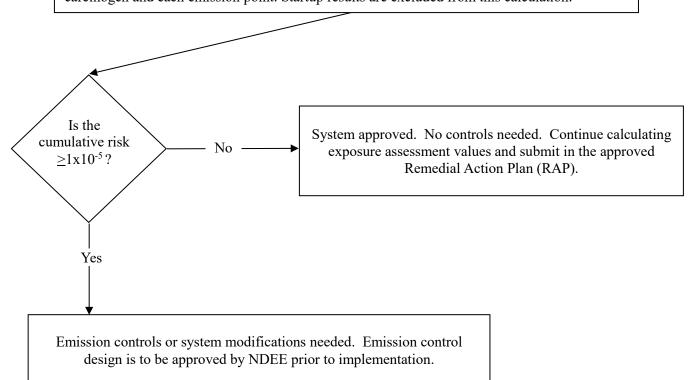
When permitting emission sampling continues for more than a twelve-month period, then the most current sampling result (in tons) is added to the results of the previous eleven months to provide a rolling twelve-month total tonnage ( $T_{rtot}$ ).

Totaling the first twelve months permitting tonnage:

$$T_{tot} = SE_1 + SE_2 + SE_3 + SE_4 + SE_5 + SE_6 + SE_6 + SE_6 + SE_9 + SE_9 + SE_9 + SE_{12}$$

Totaling the second through thirteenth month exposure assessment (rolling twelve months):

$$T_{\text{rtot}} = SE_2 + SE_3 + SE_4 + SE_5 + SE_6 + SE_6 + SE_6 + SE_9 + SE_9 + SE_9 + SE_{12} + SE_{12}$$


(NOTE: SE<sub>6</sub> tonnages are substituted for the tonnages in months 7 and 8 and SE<sub>9</sub> tonnages for the tonnages in months 10 and 11. SE<sub>12</sub> tonnages are substituted for the tonnages in months 13, 14, 15, 16 and 17 and SE<sub>18</sub> tonnages for the tonnages in months 19, 20, 21, 22, and 23, unless otherwise directed.)

## NDEE Air Emissions Guidance For Petroleum Remediation Sites Exposure Assessment Flow Chart

The RP or contracted consultant is to calculate the cancer risk value for each carcinogen at each emission point and total the values (not to exceed 1 x10<sup>-5</sup> for the total number of carcinogens present).

For pre-system implementation assessment, use the maximum estimated ground water influent and the minimum estimated effluent concentrations for the AS calculation and maximum concentrations in the exhaust for the SVE/VE calculation. Repeat for each identified carcinogen and each emission point (i.e., AS, SVE/VE).

For the post-system implementation assessment, use the average influent and the minimum effluent ground water carcinogen concentrations for the AS calculation and average carcinogen concentrations in the exhaust for the SVE/VE calculation. Repeat for each identified carcinogen and each emission point. Startup results are excluded from this calculation.



## NDEE Air Emissions Guidance for Exposure Assessment at Petroleum Remediation Sites, Continued

#### **Exposure Assessment**

The total cancer risk for the site is based on the initial and ongoing Exposure Assessments. The RP or contracted consultant is to calculate the cancer risk for each carcinogen at each emissions point at the site (i.e., each AS emission point and each SVE/VE emission point) and then add the subtotals to provide the total cancer risk for the site.

#### Ongoing Exposure Assessment

For the first year, determine the average total carcinogen risk ( $C_{ave}$ ) by adding the cumulative risk values for each sampling event (SE) and then dividing by the number of months ( $T_{SE}$ ) since beginning system operation. When emission sampling continues for more than twelve months, then add the most current results with the results of the previous eleven months and divide by 12 to provide the twelve-month rolling average total risk ( $C_{rave}$ ).

For first twelve months exposure assessment:

$$C_{ave} = \frac{\left(SE_1 + SE_2 + SE_3 + SE_4 + SE_5 + SE_6 + SE_6 + SE_6 + SE_9 + SE_9 + SE_9 + SE_{12}\right)}{T_{SE}}$$

For second through thirteenth month exposure assessment:

$$C_{rave} = \frac{\left(SE_2 + SE_3 + SE_4 + SE_5 + SE_6 + SE_6 + SE_6 + SE_9 + SE_9 + SE_9 + SE_{12} + SE_{12}\right)}{12}$$

(NOTE:  $SE_6$  results are substituted for those in months 7 and 8 and  $SE_9$  results for those in months 10 and 11.  $SE_{12}$  results are substituted for those in months 13, 14, 15, 16 and 17 and  $SE_{18}$  results for those in months 19, 20, 21, 22, and 23, unless otherwise directed.)

| CAS                   | CL LIV                | Identified in the Following        | Laboratory Analy      | ysis <sup>(3)</sup> | Carcinogen           | Modeled                      | Molecular             |
|-----------------------|-----------------------|------------------------------------|-----------------------|---------------------|----------------------|------------------------------|-----------------------|
| Number <sup>(1)</sup> | Chemical Name         | Petroleum Products <sup>(2)</sup>  | Water                 | Air                 | Group <sup>(4)</sup> | Concentration <sup>(5)</sup> | Weight <sup>(6)</sup> |
| 75-07-0               | Acetaldehyde          | Weathered Gasoline                 | 8315                  | TO-15               | 2B                   |                              | 44.05                 |
| 60-35-5               | Acetamide             | NA                                 | NA                    | NA                  | 2B                   |                              | 59.07                 |
| 75-05-8               | Acetonitrile          | NA                                 | 8260                  | TO-15               | NA                   |                              | 41.1                  |
| 98-86-2               | Acetophenone          | NA                                 | 8270                  | TO-15               | NA                   |                              | 120                   |
| 53-96-3               | 2-Acetylaminofluorene | NA                                 | 8270                  | NA                  | NA                   |                              | 223.3                 |
| 107-02-8              | Acrolein              | NA                                 | 8260 (8315, 1624)     | TO-15               | NA                   |                              | 56.06                 |
| 79-06-1               | Acrylamide            | NA                                 | NA                    | TO-15               | 2A                   |                              | 71.1                  |
| 79-10-7               | Acrylic acid          | NA                                 | NA                    | TO-15               | NA                   |                              | 72.1                  |
| 107-13-1              | Acrylonitrile         | NA                                 | 8260 (1624)           | TO-15               | 2B                   |                              | 53.06                 |
| 107-05-1              | Allyl chloride        | NA                                 | 8260                  | TO-15               | NA                   |                              | 76.5                  |
| 92-67-1               | 4-Aminobiphenyl       | NA                                 | 8270                  | NA                  | 1                    |                              | 169.2                 |
| 62-53-3               | Aniline               | NA                                 | 8270                  | TO-15               | NA                   |                              | 93.1                  |
| 90-04-0               | o-Anisidine           | NA                                 | 8270                  | NA                  | 2B                   |                              | 123.2                 |
| NA                    | Antimony Compounds    | NA                                 | NA                    | NA                  | NA                   |                              | NA                    |
| NA                    | Arsenic Compounds     | Used Oil                           | NA                    | NA                  | NA                   |                              | NA                    |
| 1332-21-4             | Asbestos              | NA                                 | NA                    | NA                  | 1                    |                              | NA                    |
| 71-43-2               | Benzene               | Gasoline, Weathered Gasoline, JP-4 | 8260 (1624, 602, 624) | TO-15               | 1                    | 343.49                       | 78.1                  |
| 92-87-5               | Benzidine             | NA                                 | 8270                  | NA                  | 1                    |                              | 184.3                 |
| 106-51-4              | p-Benzoquinone        | NA                                 | 8270                  | NA                  | NA                   |                              | 108.1                 |
| 98-07-7               | Benzotrichloride      | NA                                 | NA                    | NA                  | 2A                   |                              | 195.47                |
| 100-44-7              | Benzyl chloride       | NA                                 | 8260                  | TO-15               | 2A                   |                              | 126.6                 |

| CAS                   | CL LIV                      | Identified in the Following       | Laboratory Ana   | lysis <sup>(3)</sup> | Carcinogen           | Modeled                      | Molecular             |
|-----------------------|-----------------------------|-----------------------------------|------------------|----------------------|----------------------|------------------------------|-----------------------|
| Number <sup>(1)</sup> | Chemical Name               | Petroleum Products <sup>(2)</sup> | Water            | Air                  | Group <sup>(4)</sup> | Concentration <sup>(5)</sup> | Weight <sup>(6)</sup> |
| NA                    | Beryllium Compounds         | NA                                | NA               | NA                   | NA                   |                              | NA                    |
| 58-89-9               | BHC (Lindane)               | NA                                | 8270             | NA                   | NA                   |                              | 290.8                 |
| 92-52-4               | Biphenyl                    | NA                                | NA               | NA                   | NA                   |                              | 154.21                |
| 542-88-1              | Bis (chloromethyl) ether    | NA                                | NA               | TO-15                | 1                    |                              | 114.96                |
| 111-44-4              | Bis(2-chloroethyl) ether    | NA                                | 8270             | TO-15                | NA                   |                              | 143.01                |
| 117-81-7              | Bis(2-ethylhexyl) phthalate | NA                                | 8270             | NA                   | NA                   |                              | 390.56                |
| 75-25-2               | Bromoform                   | NA                                | 8260 (1624, 624) | TO-15                | NA                   |                              | 252.8                 |
| 74-83-9               | Bromomethane                | NA                                | 8260 (1624, 624) | TO-15                | NA                   |                              | 95                    |
| 106-99-0              | 1,3-Butadiene               | NA                                | NA               | TO-15                | 2A                   |                              | 54.09                 |
| 78-93-3               | 2-Butanone                  | NA                                | 8260 (1624)      | TO-15                | NA                   |                              | 72.1                  |
| NA                    | Cadmium compounds           | Used Oil                          | NA               | NA                   | 1                    |                              | NA                    |
| 156-62-7              | Calcium cyanamide           | NA                                | NA               | NA                   | NA                   |                              | NA                    |
| 133-06-2              | Captan                      | NA                                | 8270             | NA                   | NA                   |                              | 300.6                 |
| 63-25-2               | Carbaryl                    | NA                                | 8270             | NA                   | NA                   |                              | 201.2                 |
| 75-15-0               | Carbon disulfide            | NA                                | 8260             | TO-15                | NA                   |                              | 76.14                 |
| 56-23-5               | Carbon tetrachloride        | NA                                | 8260 (1624, 624) | TO-15                | 2B                   |                              | 153.8                 |
| 463-58-1              | Carbonyl sulfide            | NA                                | NA               | TO-15                | NA                   |                              | 60.07                 |
| 120-80-9              | Catechol                    | NA                                | NA               | TO-15                | 2B                   |                              | 110.1                 |
| 133-90-4              | Chloramben                  | NA                                | NA               | NA                   | NA                   |                              | 206.03                |
| 57-74-9               | Chlordane (NOS)             | NA                                | 8270             | NA                   | 2B                   |                              | 409.78                |
| 7782-50-5             | Chlorine                    | NA                                | NA               | NA                   | NA                   |                              | 70.91                 |

| CAS                   | CL 1 IN                                            | Identified in the Following       | Laboratory Analy      | ysis <sup>(3)</sup> | Carcinogen           | Modeled                      | Molecular             |
|-----------------------|----------------------------------------------------|-----------------------------------|-----------------------|---------------------|----------------------|------------------------------|-----------------------|
| Number <sup>(1)</sup> | Chemical Name                                      | Petroleum Products <sup>(2)</sup> | Water                 | Air                 | Group <sup>(4)</sup> | Concentration <sup>(5)</sup> | Weight <sup>(6)</sup> |
| 79-11-8               | Chloroacetic acid                                  | NA                                | NA                    | TO-15               | NA                   |                              | 94.5                  |
| 532-27-4              | 2-Chloroacetophenone                               | NA                                | NA                    | NA                  | NA                   |                              | 154.6                 |
| 108-90-7              | Chlorobenzene                                      | NA                                | 8260 (1624, 602, 624) | TO-15               | NA                   |                              | 112.6                 |
| 510-15-6              | Chlorobenzilate                                    | NA                                | 8270                  | NA                  | NA                   |                              | 325.19                |
| 75-00-3               | Chloroethane                                       | NA                                | 8260 (1624, 624)      | TO-15               | NA                   |                              | 64.51                 |
| 67-66-3               | Chloroform                                         | NA                                | 8260 (624)            | TO-15               | 2B                   |                              | 119.38                |
| 74-87-3               | Chloromethane                                      | NA                                | 8260 (1624, 624)      | TO-15               | NA                   |                              | 50.5                  |
| 107-30-2              | Chloromethyl methyl ether                          | NA                                | NA                    | TO-15               | 1                    |                              | 80.51                 |
| 126-99-8              | Chloroprene                                        | NA                                | 8260                  | TO-15               | 2B                   |                              | 88.5                  |
| NA                    | Chromium Compounds                                 | Used Oil                          | NA                    | NA                  | NA                   |                              | NA                    |
| NA                    | Cobalt Compounds                                   | NA                                | NA                    | NA                  | 2B                   |                              | NA                    |
| NA                    | Coke Oven Emissions                                | NA                                | NA                    | NA                  | NA                   |                              | NA                    |
| 1319-77-3             | Cresols/Cresylic acid (isomers and mixture)        | NA                                | NA                    | TO-15               | NA                   |                              | 108.2                 |
| NA                    | Cyanide Compounds                                  | NA                                | NA                    | NA                  | NA                   |                              | NA                    |
| 94-75-7               | 2,4-D salts esters(2,4-Dichlorophenoxyacetic acid) | NA                                | NA                    | NA                  | NA                   |                              | NA                    |
| 95-80-7               | 2,4-Diaminotoluene                                 | NA                                | 8270                  | NA                  | 2B                   |                              | 122                   |
| 334-88-3              | Diazomethane                                       | NA                                | NA                    | TO-15               | NA                   |                              | 42.1                  |
| 132-64-9              | Dibenzofuran                                       | NA                                | 8270                  | NA                  | NA                   |                              | 168.19                |
| 96-12-8               | 1,2-Dibromo-3-chloropropane                        | NA                                | 8011, 8260 (8270)     | TO-15               | 2B                   |                              | 236.4                 |
| 106-93-4              | 1,2-Dibromoethane                                  | Fuel Additive                     | 8011, 8260            | TO-15               | 2A                   |                              | 187.86                |

| CAS                   |                             | Identified in the Following       | Laboratory Analy      | ysis <sup>(3)</sup> | Carcinogen           | Modeled                      | Molecular             |
|-----------------------|-----------------------------|-----------------------------------|-----------------------|---------------------|----------------------|------------------------------|-----------------------|
| Number <sup>(1)</sup> | Chemical Name               | Petroleum Products <sup>(2)</sup> | Water                 | Air                 | Group <sup>(4)</sup> | Concentration <sup>(5)</sup> | Weight <sup>(6)</sup> |
| 106-46-7              | 1,4-Dichlorobenzene         | NA                                | 8260 (8270, 602, 624) | TO-15               | 2B                   |                              | 147                   |
| 91-94-1               | 3,3'-Dichlorobenzidine      | NA                                | 8270                  | NA                  | 2B                   |                              | 253.1                 |
| 107-06-2              | 1,2-Dichloroethane          | Fuel Additive                     | 8260 (1624, 624)      | TO-15               | 2B                   |                              | 99                    |
| 75-34-3               | 1,1-Dichloroethane          | NA                                | 8260 (1624), 624      | TO-15               | NA                   |                              | 99                    |
| 75-35-4               | 1,1-Dichloroethene          | NA                                | 8260 (1624, 624)      | TO-15               | NA                   |                              | 99                    |
| 78-87-5               | 1,2-Dichloropropane         | NA                                | 8260 (1624, 624)      | TO-15               | NA                   |                              | 112                   |
| 542-75-6              | 1,3-Dichloropropene         | NA                                | NA                    | TO-15               | 2B                   |                              | 111                   |
| 62-73-7               | Dichlorovos                 | NA                                | 8270                  | NA                  | 2B                   |                              | 221                   |
| 111-42-2              | Diethanolamine              | NA                                | NA                    | NA                  | NA                   |                              | 105.2                 |
| 64-67-5               | Diethyl sulfate             | NA                                | 8270                  | TO-15               | 2A                   |                              | 154.18                |
| 119-90-4              | 3,3'-Dimethoxybenzidine     | NA                                | 8270                  | NA                  | 2B                   |                              | 244.29                |
| 79-44-7               | Dimethyl carbamoyl chloride | NA                                | NA                    | TO-15               | 2A                   |                              | 107.6                 |
| 68-12-2               | Dimethyl formamide          | NA                                | NA                    | TO-15               | NA                   |                              | 73.1                  |
| 57-14-7               | 1,1-Dimethyl hydrazine      | NA                                | NA                    | TO-15               | 2B                   |                              | 60.1                  |
| 131-11-3              | Dimethyl phthalate          | NA                                | 8270                  | NA                  | NA                   |                              | 194.2                 |
| 77-78-1               | Dimethyl Sulfate            | NA                                | NA                    | TO-15               | 2A                   |                              | 126.1                 |
| 60-11-7               | Dimethylaminoazobenzene     | NA                                | 8270                  | NA                  | 2B                   |                              | 225.3                 |
| 121-69-7              | N,N-Dimethylaniline         | NA                                | NA                    | TO-15               | NA                   |                              | 121.2                 |
| 119-93-7              | 3,3'-Dimethylbenzidine      | NA                                | 8270                  | NA                  | 2B                   |                              | 212.29                |
| 84-74-2               | Di-n-butyl phthalate        | NA                                | 8270                  | NA                  | NA                   |                              | 278.35                |
| 534-52-1              | 4,6-Dinitro-2-methylphenol  | NA                                | 8270                  | NA                  | NA                   |                              | 198.13                |

| CAS                   | CI LIV                     | Identified in the Following                              | Laboratory Anal       | ysis <sup>(3)</sup> | Carcinogen           | Modeled                      | Molecular             |
|-----------------------|----------------------------|----------------------------------------------------------|-----------------------|---------------------|----------------------|------------------------------|-----------------------|
| Number <sup>(1)</sup> | Chemical Name              | Petroleum Products <sup>(2)</sup>                        | Water                 | Air                 | Group <sup>(4)</sup> | Concentration <sup>(5)</sup> | Weight <sup>(6)</sup> |
| 51-28-5               | 2,4-Dinitrophenol          | NA                                                       | 8270                  | NA                  | NA                   |                              | 184                   |
| 121-14-2              | 2,4-Dinitrotoluene         | NA                                                       | 8270                  | NA                  | 2B                   |                              | 182.2                 |
| 123-91-1              | 1,4-Dioxane                | NA                                                       | 8260 (1624)           | TO-15               | 2B                   |                              | 88.1                  |
| 122-66-7              | 1,2-Diphenylhydrazine      | NA                                                       | 8270                  | NA                  | NA                   |                              | 184.24                |
| 106-89-8              | Epichlorohydrin            | NA                                                       | 8260                  | TO-15               | 2A                   |                              | 92.53                 |
| 106-88-7              | 1,2-Epoxybutane            | NA                                                       | NA                    | TO-15               | 2B                   |                              | 72.12                 |
| 140-88-5              | Ethyl acrylate             | NA                                                       | NA                    | TO-15               | 2B                   |                              | 100.1                 |
| 51-79-6               | Ethyl carbamate            | NA                                                       | 8270                  | TO-15               | 2B                   |                              | 89.09                 |
| 100-41-4              | Ethyl benzene              | Gasoline, Weathered Gasoline, JP-4,<br>Fuel Oil Number 2 | 8260 (1624, 602, 624) | TO-15               | 2B                   |                              | 106.2                 |
| 107-21-1              | Ethylene glycol            | NA                                                       | NA                    | NA                  | NA                   |                              | 62.1                  |
| 151-56-4              | Ethylene imine (Aziridine) | NA                                                       | NA                    | TO-15               | 2B                   |                              | 43.07                 |
| 75-21-8               | Ethylene oxide             | NA                                                       | 8260                  | TO-15               | 1                    |                              | 44.05                 |
| 96-45-7               | Ethylene thiourea          | NA                                                       | NA                    | NA                  | NA                   |                              | 102.2                 |
| NA                    | Fine Mineral Fibers        | NA                                                       | NA                    | NA                  | NA                   |                              | NA                    |
| 50-00-0               | Formaldehyde               | Weathered Gasoline                                       | 8315                  | TO-15               | 1                    |                              | 30.03                 |
| NA                    | Glycol Ethers              | NA                                                       | NA                    | NA                  | NA                   |                              | NA                    |
| 76-44-8               | Heptachlor                 | NA                                                       | 8270                  | NA                  | 2B                   |                              | 373.4                 |
| 118-74-1              | Hexachlorobenzene          | NA                                                       | 8270                  | NA                  | 2B                   |                              | 284.78                |
| 87-68-3               | Hexachlorobutadiene        | NA                                                       | 8260 (8270)           | TO-15               | NA                   |                              | 260.7                 |
| 77-47-4               | Hexachlorocyclopentadiene  | NA                                                       | 8270                  | NA                  | NA                   |                              | 272.8                 |

| CAS                   | CI L IV                         | Identified in the Following        | Laboratory An | alysis <sup>(3)</sup> | Carcinogen           | Modeled<br>Concentration <sup>(5)</sup> | Molecular             |
|-----------------------|---------------------------------|------------------------------------|---------------|-----------------------|----------------------|-----------------------------------------|-----------------------|
| Number <sup>(1)</sup> | Chemical Name                   | Petroleum Products <sup>(2)</sup>  | Water         | Air                   | Group <sup>(4)</sup> |                                         | Weight <sup>(6)</sup> |
| 67-72-1               | Hexachloroethane                | NA                                 | 8260 (8270)   | TO-15                 | 2B                   |                                         | 236.7                 |
| 822-06-0              | Hexamethylene,-l,6-diisocyanate | NA                                 | NA            | NA                    | NA                   |                                         | 168.2                 |
| 680-31-9              | Hexamethylphosphoramide         | NA                                 | 8270          | NA                    | 2B                   |                                         | 179.2                 |
| 110-54-3              | Hexane                          | Gasoline, Weathered Gasoline, JP-4 | NA            | TO-15                 | NA                   |                                         | 86.2                  |
| 302-01-2              | Hydrazine                       | NA                                 | NA            | NA                    | 2B                   |                                         | 32.05                 |
| 7647-01-0             | Hydrochloric acid               | NA                                 | NA            | NA                    | NA                   |                                         | 36.46                 |
| 7664-39-3             | Hydrogen fluoride               | NA                                 | NA            | NA                    | NA                   |                                         | 20.01                 |
| 123-31-9              | Hydroquinone                    | NA                                 | 8270          | NA                    | NA                   |                                         | 110.1                 |
| 74-88-4               | Iodomethane                     | NA                                 | 8260          | TO-15                 | NA                   |                                         | 141.94                |
| 78-59-1               | Isophorone                      | NA                                 | 8270          | TO-15                 | NA                   |                                         | 138.2                 |
| 98-82-8               | Isopropylbenzene                | NA                                 | 8260          | TO-15                 | NA                   |                                         | 120.19                |
| NA                    | Lead Compounds                  | Used Oil                           | NA            | NA                    | 2A                   |                                         | NA                    |
| 108-31-6              | Maleic anhydride                | NA                                 | 8270          | NA                    | NA                   |                                         | 98.06                 |
| NA                    | Manganese Compounds             | NA                                 | NA            | NA                    | NA                   |                                         | NA                    |
| NA                    | Mercury Compounds               | NA                                 | NA            | NA                    | NA                   |                                         | NA                    |
| 67-56-1               | Methanol                        | Fuel Additive                      | 8260          | TO-15                 | NA                   |                                         | 32.1                  |
| 72-43-5               | Methoxychlor                    | NA                                 | 8270          | NA                    | NA                   |                                         | 345.7                 |
| 624-83-9              | Methyl isocyanate               | NA                                 | NA            | TO-15                 | NA                   |                                         | 57.05                 |
| 80-62-6               | Methyl methacrylate             | NA                                 | 8260          | TO-15                 | NA                   |                                         | 100.12                |
| 1634-04-4             | Methyl tert-butyl ether         | Fuel Additive                      | NA            | TO-15                 | NA                   |                                         | 88.15                 |
| 108-10-1              | 4-Methyl-2-pentanone            | NA                                 | 8260          | TO-15                 | NA                   |                                         | 100                   |

| CAS                   | CI LIV                              | Identified in the Following                        | Laboratory Ana   | lysis <sup>(3)</sup> | Carcinogen           | Modeled                      | Molecular             |
|-----------------------|-------------------------------------|----------------------------------------------------|------------------|----------------------|----------------------|------------------------------|-----------------------|
| Number <sup>(1)</sup> | Chemical Name                       | Petroleum Products <sup>(2)</sup>                  | Water            | Air                  | Group <sup>(4)</sup> | Concentration <sup>(5)</sup> | Weight <sup>(6)</sup> |
| 75-09-2               | Methylene chloride                  | NA                                                 | 8260 (1624, 624) | TO-15                | 2B                   |                              | 84.9                  |
| 101-68-8              | Methylene diphenyl diisocyanate     | NA                                                 | NA               | NA                   | NA                   |                              | 250                   |
| 101-14-4              | 4,4'-Methylenebis (2-chloroaniline) | NA                                                 | 8270             | NA                   | 2A                   |                              | 267.2                 |
| 101-77-9              | .4,4'-Methylenedianiline            | NA                                                 | NA               | NA                   | 2B                   |                              | 198.3                 |
| 60-34-4               | Methylhydrazine                     | NA                                                 | NA               | TO-15                | NA                   |                              | 46.1                  |
| 106-44-5              | 4-Methylphenol                      | NA                                                 | 8270             | NA                   | NA                   |                              | 108.2                 |
| 108-39-4              | 3-Methylphenol                      | NA                                                 | 8270             | NA                   | NA                   |                              | 108.2                 |
| 95-48-7               | 2-Methylphenol                      | Fuel Oil Number 2                                  | 8270             | TO-15                | NA                   |                              | 108.2                 |
| 91-20-3               | Naphthalene                         | Gasoline, Weathered Gasoline, Fuel<br>Oil Number 2 | 8260 (8270)      | NA                   | 2B                   |                              | 128.2                 |
| NA                    | Nickel compounds                    | NA                                                 | NA               | NA                   | 1                    |                              | NA                    |
| 98-95-3               | Nitrobenzene                        | NA                                                 | 8260 (8270)      | TO-15                | 2B                   |                              | 123.1                 |
| 92-93-3               | 4-Nitrobiphenyl                     | NA                                                 | 8270             | NA                   | NA                   |                              | 199.2                 |
| 100-02-7              | 4-Nitrophenol                       | NA                                                 | 8270             | NA                   | NA                   |                              | 184                   |
| 79-46-9               | 2-Nitropropane                      | NA                                                 | 8260             | TO-15                | 2B                   |                              | 89.1                  |
| 684-93-5              | N-Nitroso-N-methylurea              | NA                                                 | NA               | TO-15                | 2A                   |                              | 103.1                 |
| 62-75-9               | N-Nitrosodimethylamine              | NA                                                 | 8270             | TO-15                | 2A                   |                              | 74.1                  |
| 59-89-2               | N-Nitrosomorpholine                 | NA                                                 | 8270             | TO-15                | 2B                   |                              | NA                    |
| 56-38-2               | Parathion                           | NA                                                 | 8270             | NA                   | NA                   |                              | 291.3                 |
| 82-68-8               | Pentachloronitrobenzene             | NA                                                 | 8270             | NA                   | NA                   |                              | 295.34                |
| 87-86-5               | Pentachlorophenol                   | NA                                                 | 8270             | NA                   | NA                   |                              | 266.4                 |

| CAS                   | CI L LV                                | Identified in the Following | Laboratory A | nalysis <sup>(3)</sup> | Carcinogen           | Modeled<br>Concentration <sup>(5)</sup> | Molecular             |
|-----------------------|----------------------------------------|-----------------------------|--------------|------------------------|----------------------|-----------------------------------------|-----------------------|
| Number <sup>(1)</sup> | Chemical Name                          | Petroleum Products(2)       | Water        | Air                    | Group <sup>(4)</sup> |                                         | Weight <sup>(6)</sup> |
| 108-95-2              | Phenol                                 | Fuel Oil Number 2           | 8270         | TO-15                  | NA                   |                                         | 94.1                  |
| 106-50-3              | 1,4-Phenylenediamine                   | NA                          | 8270         | NA                     | NA                   |                                         | 108.2                 |
| 75-44-5               | Phosgene                               | NA                          | NA           | TO-15                  | NA                   |                                         | 98.92                 |
| 7803-51-2             | Phosphine                              | NA                          | NA           | NA                     | NA                   |                                         | 34                    |
| 7723-14-0             | Phosphorous                            | NA                          | NA           | NA                     | NA                   |                                         | 124                   |
| 85-44-9               | Phthalic anhydride                     | NA                          | 8270         | NA                     | NA                   |                                         | 148.12                |
| 1336-36-3             | Polychlorinated biphenyls (Aroclors)   | NA                          | NA           | NA                     | 2A                   |                                         | NA                    |
| NA                    | Polycyclic Organic Matter (POM)        | NA                          | NA           | NA                     | NA                   |                                         | NA                    |
| 123-38-6              | Propanal                               | NA                          | 8315         | TO-15                  | NA                   |                                         | 58                    |
| 1120-71-4             | 1,3-Propane sultone                    | NA                          | NA           | TO-15                  | 2B                   |                                         | 122.2                 |
| 57-57-8               | b-Propiolactone                        | NA                          | 8260         | TO-15                  | 2B                   |                                         | 72.1                  |
| 114-26-1              | Propoxur (Baygone)                     | NA                          | NA           | NA                     | NA                   |                                         | 209.3                 |
| 115-07-1              | Propylene                              | NA                          | NA           | NA                     | NA                   |                                         | 42.08                 |
| 75-56-9               | Propylene oxide                        | NA                          | NA           | TO-15                  | 2B                   |                                         | 58.08                 |
| 75-55-8               | 1,2-Propylenimine (2-Methyl aziridine) | NA                          | NA           | TO-15                  | 2B                   |                                         | 57.1                  |
| 91-22-5               | Quinoline                              | Fuel Oil Number 2           | NA           | NA                     | NA                   |                                         | 129.16                |
| NA                    | Radionuclides (including Radon)        | NA                          | NA           | NA                     | NA                   |                                         | NA                    |
| NA                    | Selenium Compounds                     | NA                          | NA           | NA                     | NA                   |                                         | NA                    |
| 100-42-5              | Styrene                                | NA                          | 8260         | TO-15                  | 2B                   |                                         | 104.2                 |
| 96-09-3               | Styrene oxide                          | NA                          | NA           | TO-15                  | 2A                   |                                         | 120.2                 |
| 1746-01-6             | 2,3,7,8-Tetrachlorodibenzo-p-dioxin    | NA                          | NA           | NA                     | 1                    |                                         | 321.96                |

| CAS                   | a                                 | Identified in the Following        | Laboratory Analysis <sup>(3)</sup> |       | Carcinogen           | Modeled                      | Molecular             |
|-----------------------|-----------------------------------|------------------------------------|------------------------------------|-------|----------------------|------------------------------|-----------------------|
| Number <sup>(1)</sup> | Chemical Name                     | Petroleum Products <sup>(2)</sup>  | Water                              | Air   | Group <sup>(4)</sup> | Concentration <sup>(5)</sup> | Weight <sup>(6)</sup> |
| 79-34-5               | 1,1,2,2-Tetrachloroethane         | NA                                 | 8260 (1624, 624)                   | TO-15 | NA                   |                              | 167.9                 |
| 127-18-4              | Tetrachloroethene (Perc)          | NA                                 | 8260 (1624, 624)                   | TO-15 | 2A                   |                              | 165.8                 |
| 7550-45-0             | Titanium tetrachloride            | NA                                 | NA                                 | NA    | NA                   |                              | 189.69                |
| 108-88-3              | Toluene                           | Gasoline, Weathered Gasoline, JP-4 | 8260 (1624, 602, 624)              | TO-15 | NA                   |                              | 92.1                  |
| 584-84-9              | Toluene diisocyanate              | NA                                 | 8270                               | NA    | NA                   |                              | 174.16                |
| 95-53-4               | o-Toluidine                       | NA                                 | 8260 (8270)                        | NA    | 2A                   |                              | 107.2                 |
| 8001-35-2             | Toxaphene                         | NA                                 | 8270                               | NA    | 2B                   |                              | 413.8                 |
| 120-82-1              | 1,2,4-Trichlorobenzene            | NA                                 | 8260 (8270)                        | TO-15 | NA                   |                              | 181.4                 |
| 71-55-6               | 1,1,1-Trichloroethane (1,1,1-TCA) | NA                                 | 8260 (1624, 624)                   | TO-15 | NA                   |                              | 133.4                 |
| 79-00-5               | 1,1,2-Trichloroethane             | NA                                 | 8260 (1624, 624)                   | TO-15 | NA                   |                              | 133.4                 |
| 79-01-6               | Trichloroethene (TCE)             | NA                                 | 8260 (1624, 624)                   | TO-15 | 2A                   |                              | 133.4                 |
| 88-06-2               | 2,4,6-Trichlorophenol             | NA                                 | 8270                               | NA    | NA                   |                              | 197.46                |
| 95-95-4               | 2,4,5-Trichlorophenol             | NA                                 | 8270                               | NA    | NA                   |                              | 197.46                |
| 121-44-8              | Triethylamine                     | NA                                 | NA                                 | TO-15 | NA                   |                              | 101.2                 |
| 1582-09-8             | Trifluralin                       | NA                                 | 8270                               | NA    | NA                   |                              | 335.28                |
| 540-84-1              | 2,2,4-Trimethylpentane            | Gasoline, Weathered Gasoline       | NA                                 | TO-15 | NA                   |                              | 114.23                |
| 108-05-4              | Vinyl acetate                     | NA                                 | 8260                               | TO-15 | 2B                   |                              | 86.09                 |
| 593-60-2              | Vinyl bromide (bromoethene)       | NA                                 | NA                                 | TO-15 | 2A                   |                              | 107                   |
| 75-01-4               | Vinyl chloride                    | NA                                 | 8260 (1624, 624)                   | TO-15 | 1                    |                              | 62.05                 |
| 95-47-6               | o-Xylene                          | Weathered Gasoline                 | 8260                               | TO-15 | NA                   |                              | 106.2                 |
| 106-42-3              | p-Xylene                          | Gasoline, Weathered Gasoline       | 8260                               | TO-15 | NA                   |                              | 106.2                 |

| CAS                   | Chemical Name                 | Identified in the Following<br>Petroleum Products <sup>(2)</sup> | Laboratory Analysis <sup>(3)</sup> |       | Carcinogen           | Modeled                      | Molecular             |
|-----------------------|-------------------------------|------------------------------------------------------------------|------------------------------------|-------|----------------------|------------------------------|-----------------------|
| Number <sup>(1)</sup> |                               |                                                                  | Water                              | Air   | Group <sup>(4)</sup> | Concentration <sup>(5)</sup> | Weight <sup>(6)</sup> |
| 108-38-3              | m-Xylene                      | Gasoline, Weathered Gasoline, JP-4,<br>Fuel Oil Number 2         | 8260                               | TO-15 | NA                   |                              | 106.2                 |
| 1330-20-7             | Xylenes (isomers and mixture) | NA                                                               | NA                                 | TO-15 | NA                   |                              | 106.2                 |

- (1) CAS stands for Chemical Abstract Service
- (2) Petroleum products information from: February 2004 NDEE RBCA at Petroleum Release Sites; Spring 1990 GWMR; June 1995 Journal of the Air and Waste Management Association, and EPA Oil Specification Standards
- (3) The latest version of EPA Method 8260 is the preferred analysis method for identifying the pollutants present in the ground water. Alternate analysis methods listed in parentheses should be used only after consultation with the PRS PM or if needed in order to meet the requirements of an NPDES discharge permit.
  - 8011: EPA Method 8011: 1,2-Dibromoethane And 1,2-Dibromo-3-Chloropropane By Microextraction And Gas Chromatography
  - 8270: EPA Method 8270: Semivolatile Organic Compounds By GC/MS
  - 8315: EPA Method 8315: Determination of Carbonyl Compounds by High Performance Liquid Chromatography (HPLC)
  - 602: EPA Method 602 Purgeable Aromatics
  - 624: EPA Method 624: Purgeables
  - 162: EPA Method 1624 Revision B: Volatile Organic Compounds by Isotope Dilution GC/MS
  - TO-3: EPA Method TO-3: Method for the Determination of Volatile Organic Compounds in Ambient Air Using Cryogenic Pre-Concentration Techniques and Gas Chromatography With Flame Ionization and Electron Capture Detection
  - TO-15: EPA Compendium Method TO-15: Determination of VOCs in Air Collected in Specially-Prepared Canisters and Analyzed by GC/MS
- (4) Carcinogen Group is based on the International Agency for Research on Cancer website (http://www-cie.iarc.fr/), July 2005:
  - 1 stands for Group 1: The agent (mixture) is carcinogenic to humans. The exposure circumstance entails exposures that are carcinogenic to humans.
  - 2A stands for Group 2A: The agent (mixture) is probably carcinogenic to humans. The exposure circumstance entails exposures that are probably carcinogenic to humans.
  - 2B stands for Group 2B: The agent (mixture) is possibly carcinogenic to humans. The exposure circumstance entails exposures that are possibly carcinogenic to humans.
  - NA stands for not applicable (i.e., not listed as a group 1, 2A or 2B agent)
- (5) Modeled Concentration is the Modeled Average Annual Ambient Chemical Concentration provided by NDEE. Units are in (milligrams per meter cubed) per (gram per second)
- (6) Molecular Weight is in grams per gram-mole or pounds per pound-mole

| To convert from:  | To:                                     | Multiply by:                                          |  |  |  |
|-------------------|-----------------------------------------|-------------------------------------------------------|--|--|--|
|                   | Concentration of a Chemical in Air      |                                                       |  |  |  |
|                   | ppb                                     | 24,450/{molecular weight of chemical (g/gmole)}       |  |  |  |
| mg/m <sup>3</sup> | ppm                                     | 24.45/{molecular weight of chemical (g/gmole)}        |  |  |  |
|                   | ug/m <sup>3</sup>                       | 1,000                                                 |  |  |  |
|                   | mg/m <sup>3</sup>                       | molecular weight of chemical (g/gmole)/24,450         |  |  |  |
| ppb               | ppm                                     | 0.001                                                 |  |  |  |
|                   | ug/m <sup>3</sup>                       | molecular weight of chemical (g/gmole)/24.45          |  |  |  |
|                   | mg/m <sup>3</sup>                       | molecular weight of chemical (g/gmole)/24.45          |  |  |  |
| ppm               | ppb                                     | 1,000                                                 |  |  |  |
|                   | ug/m <sup>3</sup>                       | 1,000*molecular weight of chemical (g/gmole)/24.45    |  |  |  |
|                   | mg/m <sup>3</sup>                       | 0.001                                                 |  |  |  |
| ug/m³             | ppb                                     | 24.45/{molecular weight of chemical (g/gmole)}        |  |  |  |
|                   | ppm                                     | 0.02445/{molecular weight of chemical (g/gmole)}      |  |  |  |
|                   | Concentration of a Chemical in a Liquid |                                                       |  |  |  |
|                   | ppb                                     | 1,000/{Liquid specific gravity or density (g/ml)}     |  |  |  |
| mg/l              | ppm                                     | 1/{Liquid specific gravity or density (g/ml)}         |  |  |  |
|                   | ug/l                                    | 1,000                                                 |  |  |  |
|                   | mg/l                                    | {Liquid specific gravity or density (g/ml)} / 1,000   |  |  |  |
| ppb               | ppm                                     | 0.001                                                 |  |  |  |
|                   | ug/l                                    | Liquid specific gravity or density (g/ml)             |  |  |  |
|                   | mg/l                                    | Liquid specific gravity or density (g/ml)             |  |  |  |
| ppm               | ppb                                     | 1,000                                                 |  |  |  |
|                   | ug/l                                    | 1,000 * liquid specific gravity or density (g/ml)     |  |  |  |
|                   | mg/l                                    | 0.001                                                 |  |  |  |
| ug/l              | ppm                                     | 1/{1,000*[Liquid specific gravity or density (g/ml)]} |  |  |  |
|                   | ppb                                     | 1/{Liquid specific gravity or density (g/ml)}         |  |  |  |

density of water is 1 gram per milliliter
g/gmole = grams per gram mole
g/ml = grams per milliliter
mg/l = milligrams per liter
mg/m³ = milligrams per cubic meter
molecular weights for Hazardous Air Pollutants are included in Appendix B
ppm = parts per million
ppb = parts per billion
specific gravity = density of a liquid divided by the density of water (1 for water)
ug/l = micrograms per liter
ug/m³ = micrograms per cubic meter

| To convert from: | To:                                      | Multiply by:                                    |  |  |  |
|------------------|------------------------------------------|-------------------------------------------------|--|--|--|
|                  | Flow (Including conversions to velocity) |                                                 |  |  |  |
|                  | ft/min                                   | $1/{3.14*(\text{radius of pipe in feet})^2}$    |  |  |  |
|                  | ft/sec                                   | $1/\{188*(\text{radius of pipe in feet})^2\}$   |  |  |  |
| cfm              | gpm                                      | 7.48                                            |  |  |  |
|                  | 1/min                                    | 28.3                                            |  |  |  |
|                  | m/sec                                    | $1/\{618*(\text{radius of pipe in feet})^2\}$   |  |  |  |
|                  | cfm                                      | 0.134                                           |  |  |  |
|                  | ft/min                                   | $1/\{23.5*(\text{radius of pipe in feet})^2\}$  |  |  |  |
| gpm              | ft/sec                                   | $1/\{1,410*(\text{radius of pipe in feet})^2\}$ |  |  |  |
|                  | 1/min                                    | 3.785                                           |  |  |  |
|                  | m/sec                                    | $1/\{4,626*(\text{radius of pipe in feet})^2\}$ |  |  |  |
|                  | Time                                     |                                                 |  |  |  |
|                  | min                                      | 60                                              |  |  |  |
| hr               | sec                                      | 3,600                                           |  |  |  |
|                  | years                                    | 1.14*10 <sup>-4</sup> or 1/8,760                |  |  |  |
|                  | hr                                       | 0.0167 or 1/60                                  |  |  |  |
| min              | sec                                      | 60                                              |  |  |  |
|                  | years                                    | 1.90*10 <sup>-6</sup> or 1/525,600              |  |  |  |
|                  | hr                                       | 2.78*10 <sup>-4</sup> or 1/3600                 |  |  |  |
| sec              | min                                      | 0.0167 or 1/60                                  |  |  |  |
|                  | years                                    | 3.17*10 <sup>-8</sup> or 1/31,536,000           |  |  |  |
|                  | hr                                       | 8,760                                           |  |  |  |
| years            | min                                      | 525,600                                         |  |  |  |
|                  | sec                                      | 31,536,000                                      |  |  |  |

cfm = cubic feet per minute ft/min = feet per minute ft/sec = feet per second gpm = gallons per minute hr = hours l/min = liters per minute min = minutes m/s = meters per second sec = seconds

| To convert from:                        | To:    | Multiply by:                                |  |  |
|-----------------------------------------|--------|---------------------------------------------|--|--|
| Velocity (including conversion to flow) |        |                                             |  |  |
|                                         | cfm    | 3.14*(radius of pipe in feet) <sup>2</sup>  |  |  |
| ft/min                                  | ft/sec | 0.0167 or 1/60                              |  |  |
| 10/111111                               | gpm    | 23.5*(radius of pipe in feet) <sup>2</sup>  |  |  |
|                                         | m/sec  | 5.08*10 <sup>-3</sup>                       |  |  |
|                                         | cfm    | 188*(radius of pipe in feet) <sup>2</sup>   |  |  |
| ft/sec                                  | ft/min | 60                                          |  |  |
| 10/860                                  | gpm    | 1,409*(radius of pipe in feet) <sup>2</sup> |  |  |
|                                         | m/sec  | 0.3048                                      |  |  |
|                                         | cfm    | 197*(radius of pipe in feet) <sup>2</sup>   |  |  |
| m/sec                                   | ft/min | 197                                         |  |  |
| III/Sec                                 | ft/sec | 3.28                                        |  |  |
|                                         | gpm    | 1,473*(radius of pipe in feet) <sup>2</sup> |  |  |
|                                         |        | Weight                                      |  |  |
|                                         | kg     | 0.001 or 1/1,000                            |  |  |
|                                         | lb     | 0.0022 or 2.2/1,000                         |  |  |
| g                                       | mg     | 1,000                                       |  |  |
|                                         | tons   | 1.1*10 <sup>-6</sup> or 2.2/2,000,000       |  |  |
|                                         | ug     | 1,000,000                                   |  |  |
|                                         | g      | 1,000                                       |  |  |
|                                         | lb     | 2.2                                         |  |  |
| kg                                      | mg     | 1,000,000                                   |  |  |
|                                         | tons   | 0.0011 or 2.2/2,000                         |  |  |
|                                         | ug     | 1*10°                                       |  |  |
|                                         | g      | 455 or 1,000/2.2                            |  |  |
|                                         | kg     | 0.455 or 1/2.2                              |  |  |
| lbs                                     | mg     | 455,000 or 1,000,000/2.2                    |  |  |
|                                         | tons   | 5*10 <sup>-4</sup> or 1/2,000               |  |  |
|                                         | ug     | 4.55*108                                    |  |  |

cfm = cubic feet per minute ft/min = feet per minute ft/sec = feet per second g = grams gpm = gallons per minute kg = kilograms lb = pounds l/min = liters per minute mg = milligrams m/s = meters per second ug = micrograms

| To convert from: | To:    | Multiply by:          |  |  |  |
|------------------|--------|-----------------------|--|--|--|
|                  | Weight |                       |  |  |  |
|                  | g      | 0.001 or 1/1,000      |  |  |  |
|                  | kg     | 1*10-6                |  |  |  |
| mg               | lb     | 2.2*10 <sup>-6</sup>  |  |  |  |
|                  | tons   | 1.1*10 <sup>-9</sup>  |  |  |  |
|                  | ug     | 1,000                 |  |  |  |
|                  | g      | 909,000               |  |  |  |
|                  | kg     | 909                   |  |  |  |
| tons             | lb     | 2,000                 |  |  |  |
|                  | mg     | $9.09*10^{8}$         |  |  |  |
|                  | ug     | 9.09*10 <sup>11</sup> |  |  |  |
|                  | g      | 1*10 <sup>-6</sup>    |  |  |  |
|                  | kg     | 1*10-9                |  |  |  |
| ug               | lb     | 2.2*10-9              |  |  |  |
|                  | mg     | 0.001                 |  |  |  |
|                  | tons   | 1.1*10 <sup>-12</sup> |  |  |  |

g = grams kg = kilograms lb = pounds mg = milligrams ug = micrograms

#### Sample Calculation for a Concentration of a Chemical in Water

A part per million (ppm) concentration of a chemical in water is coincidentally equivalent to a milligram of chemical per liter of water since the density of water is equal to one gram per milliliter. The ppm and ppb concentrations are by weight unless noted otherwise (i.e., with a subscript "v": ppm<sub>v</sub>).

The following is a sample calculation for converting parts per million to milligrams per liter:

$$1 \text{ ppm} = \frac{1 \text{ part chemical}}{1 \text{ million parts water}} = \frac{1 \text{ gram chemical}}{1,000,000 \text{ grams water}} = \frac{\left(1 \text{ gram chemical}\right) * \left(\frac{1000 \text{ milligrams}}{1 \text{ gram}}\right)}{\left(1,000,000 \text{ grams water}\right) / \left(\frac{1 \text{ gram water}}{1 \text{ milliliter water}}\right)} = \frac{000 \text{ milligrams chemical}}{1,000 \text{ milligrams chemical}} = \frac{1,000 \text{ milligrams chemical}}{1,000 \text{ milligrams chemical}} = \frac{1 \text{ milligram chemical}}{1,000 \text{ milligram chemical}} = \frac{1 \text{ milligram che$$

$$\frac{1,000 \text{ milligrams chemical}}{1,000,000 \text{ milliliters water}} = \frac{1,000 \text{ milligrams chemical}}{(1,000,000 \text{ milliliters water})*} \left(\frac{1 \text{ liter}}{1,000 \text{ milliliters}}\right) = \frac{1 \text{ milligram chemical}}{1 \text{ liter water}} = 1 \frac{\text{mg}}{L}$$

#### Sample Calculation for a Concentration of a Chemical in Air

A ppm or ppb chemical concentration in air is typically by volume, not by weight (i.e., unless the units are presented with a subscript "w": ppm<sub>w</sub>). Therefore, converting ppm and ppb concentrations in air to a weight per unit volume concentration (e.g., mg/m³ or ug/m³) requires a conversion of the chemical volume to a chemical weight.

A ppm concentration in air may be written as follows:

$$C_{ppm} = X = \frac{X \text{ parts chemical}}{1 \text{ million parts air}} = \frac{X \text{ liters chemical}}{1,000,000 \text{ liters air}} = \frac{\left(\frac{X \text{ liters chemical}}{1,000,000 \text{ liters air}}\right)}{1 \text{ ppm}}$$

The volume occupied by a liter (i.e., or other volume unit) of the chemical is calculated using the Ideal Gas Law, which assumes the chemical is present at low concentrations and at low pressure (i.e., limited interactions between the chemical and air approaches ideal conditions).

Air Emissions Guidance For Petroleum Remediation Sites Nebraska Department of Environment & Energy Appendix C - Unit Conversions April 2020

$$P * V = n * R * T$$

Where:

P = Pressure

V = Volume of chemical

n = Number of moles of the chemical

R = Ideal gas law constant

T = Absolute Temperature

The units may vary (i.e., as long as the appropriate ideal gas law constant is used so that the units cancel), but the temperature is to be in Rankine or Kelvin (i.e., absolute temperature).

The Ideal Gas Law equation may be manipulated so that the equation can be solved for the number of moles of the chemical:

$$P*V = n*R*T \Rightarrow n = \frac{P*V}{R*T}$$

Multiplying the number of moles of a chemical by the molecular weight of the chemical yields a formula for the weight of the chemical based on the volume occupied by the chemical:

$$w = MW * n = MW * \frac{P * V}{R * T}$$

Where:

W = weight of chemical in grams

MW = molecular weight of chemical in grams per gram mole

Molecular weights for Hazardous Air Pollutants are included in Appendix B. Chemical groups, such as total petroleum hydrocarbons as gasoline, do not have a single molecular weight, but an average molecular weight may be used.

Substituting the variables with the following:

- A pressure of one atmosphere,
- An unknown volume of chemical X (i.e., X would be the concentration of the chemical in ppm),

- The Ideal Gas Law constant (0.08205 for the units used), and
- A temperature of 293.15 Kelvin (i.e., 20 degrees Celsius or 68 degrees Fahrenheit; used to represent typical conditions).

The substitution yields:

$$W = \left(\text{MW} \frac{\text{grams chemical}}{\text{gram moles chemical}}\right) * \frac{(1 \text{ atmosphere}) * (X \text{ liters of chemical})}{\left(0.08205 \frac{\text{atmospheres * liters}}{\text{gram moles Kelvin}}\right) * (293.15 \text{ Kelvin})}$$

$$= \frac{\left(\text{MW} \frac{\text{grams chemical}}{\text{gram moles chemical}}\right)}{\left(24.05 \frac{\text{liters of chemical}}{\text{gram moles chemical}}\right)} * (X \text{ liters of chemical})$$

If the molecular weight (MW) divided by 24.45 is multiplied by the formula for the concentration in parts per million, the following equation results:

$$C_{ppm} * \frac{\left(MW \frac{grams \ chemical}{gram \ moles \ chemical}\right)}{\left(24.45 \frac{liters \ of \ chemical}{gram \ moles \ chemical}\right)} = \frac{\left(\frac{X \ liters \ of \ chemical}{1,000,000 \ liters \ air}\right)}{1 \ ppm} * \frac{\left(MW \frac{grams \ chemical}{gram \ moles \ chemical}\right)}{\left(24.45 \frac{liters \ of \ chemical}{gram \ moles \ chemical}\right)}$$

Simplifying this equation yields:

$$C_{ppm} * \frac{\left(MW \frac{grams chemical}{gram moles chemical}\right)}{\left(24.45 \frac{liters of chemical}{gram moles chemical}\right)} = \frac{X * MW grams chemical}{24,450,000 liters air * ppm}$$

Converting the units to milligrams per cubic meter yields:

$$C_{ppm} * \frac{\left(\frac{\text{MW} \cdot \text{grams chemical}}{\text{gram moles chemical}}\right)}{\left(\frac{24.45 \cdot \text{liters of chemical}}{\text{gram moles chemical}}\right)} = \frac{X * \text{MW grams chemical}}{24,450,000 \, \text{liters air * ppm}} \frac{\left(\frac{1,000 \, \text{milligrams}}{1 \, \text{gram}}\right)}{\left(\frac{1 \, \text{cubic meter}}{1,000 \, \text{liters}}\right)} = \frac{X * \text{MW milligrams chemical}}{24.45 \, \text{cubic meters air * ppm}}$$

$$C_{ppm} * \frac{\left(MW \frac{grams \ chemical}{gram \ moles \ chemical}\right)}{\left(24.45 \frac{liters \ of \ chemical}{gram \ moles \ chemical}\right)} = \frac{X * MW \ milligrams \ chemical}{24.45 \ cubic \ meters \ air * ppm} = C_{\frac{mg}{m^3}}$$

An example conversion for a Tedlar bag sample:

- Concentration of benzene = 0.3 parts per million
- Molecular weight of benzene (from Appendix B) = 78.1 grams per gram-mole

Therefore, the concentration of benzene in milligrams per cubic meter of air is:

$$C_{\frac{ng}{m^3}} = C_{ppm} * \frac{\left(MW \frac{\text{milligrams chemical}}{\text{gram moles chemical}}\right)}{\left(24.45 \frac{\text{cubic meters air}}{\text{gram moles chemical}}\right)} = 0.3 \text{ ppm} * \frac{\left(78.1 \frac{\text{milligrams chemical}}{\text{gram moles chemical}}\right)}{\left(24.45 \frac{\text{cubic meters air}}{\text{gram moles chemical}}\right)} = 0.958 \frac{\text{milligrams}}{\text{cubic meter}}$$